A RAND NOTE

DTIC

ELECTE
JAN 19 1990

D"

- v e d

405
_RAND

AD-A216 898

The RAND-ABEL® Programming Language:

Reference Manual

Norman Z. Shapiro, H Edward Hali,
Robert H. Anderson, Mark LaCassa,
Martietta S. Gillogly, Robert Weissler

.December 1988

.t
Y

DISTAIBUTION EUTION STRTENENT X

) Approvod foi
puklic releqs
D txibunon Um,m,,eda o

''90 01 18 018

The regearch described in this repoxt was sponsored by the
Director of Net Assessment, Office of the Secretary of Defense
(0SD), under RAND's National Defense Reseaxch Institute, an
0SD~supported Federally Funded Research and Development Cavtér,
Contract No, MDA903-85-C-~0030.

The RAND- Publication Series: "The Report is the principal publication .doc-
umenting and transmitting RAND's major research findings and final research
results. The RAND Note reports other outputs of sponsored research fo:
general distribution. Publications of The RAND Corporation do not neces-
sarily reflect the opinions or policies of ‘the sponsors of RAND research.,

Published'by The RAND Corporation | ,
1700 Main Street, P.0. Box 2138, Santa Monica, CA 90406-2138

A RAND NCGTE N-2367-1-NA

The RAND-ABEL® Programming Language:
Reference Manual

Norman Z. Shapiro, H. Edward Halil,
Robert H. Anderson, Mark LaCasse,
Marrietta S. Gillogly, Robert Weissler

December 1988

Prepared for

The Director of Net Assessment,

Office of the Secretary of Defense | zzeeon For

/

NTIS CRA&I W
DTIC TAB 3
Unannounced (]
Justilication i
By (11 Ll Lt |
Distribution/

Availability Codes

. Avall sndfor
Dist Special

A research publication from B
The RAND Strategy Assessment Center

JoSltas
RAND

APPROYED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

- idi -

PREFACE

The RAND-ABEL®! was doveloped at The RAND Coxporation, originally
for use in writing complex decision-model "agents" as part of &
knowledga-based simulation for automated war gaming. It was designed
and implemented initially by Noxman Z. Shapiro, H. Edward Hall, and Mark
LaCassc. Robert Weissler has made important subsequent contributions.

RAND-ABEL is an cvolving operational language that is now being
used in a number of diverse projects. It will be available in the
public domain. This Note, which updates a 1985 publication, documents
the RAND-ABEL language as it oxisted in March 1988. It is intended
primaxily for programmers. It gives a texse but complete description of
the language. It assumes the reader is fluent in at least one high-
level programming language and is familiaxr wich the notation and
concepts used to describe the formal syntax of programming languages.
For background on RAND-ABEL's orxigin and underlying principles, sce:

Shapiro, Norman Z., H. Edward Hall, Robert H. Anderson, and
Mark LaCassc, The RAND-ABEL™ Programming Languaga:
History, Rotionale, and Design, The RAND Corporation,
R-3274-NA, August 1985.

Current plans axc to complete by the end of 1988 the addition of
several new RAND-ABEL features. Those new features will broaden the
scope of problems addressed by RAND-ABEL, and allow for clearer &nd more
efficient modeling. The features include: sets (with enumerative
values as legal members), type-unions (with dynamic type assignment and
checking), data structures of arbitrary complexity, and lists (including
a variety of operators for manipulating them). Readers having versions
of RAND-ABEL produced after this manual's publication showid check the
relevant on-line documentation to see what additional features their
software supports (see file UPDATES in the main RAND-ABEL source
directory).

IRAND-ABEL is a trademark of The RAND Corporation.

- v -

This work was conducted by the RAND Strategy Assessment Center and
sponsorad by the Dircctor of Net Assessment in the Office of the
Sccretary of Dofense, under the auspices of RAND's National Defense
Rescarch Institute, a Faderally Fuuded Rescarch and Development Center
sponsored by the Office of the Secrenary of Defense.

Inquirics and comments are welcomi Thay may be sent directly to
the authors or to Dr. Paul K. Davis, Diractor of tha RAND Strategy
Assessment Centor.

SUMMARY

This reforence manusl describes the RAND-ABEL programming language.
In designing the RAND-ABEL language, wo dotexmined that
-

éﬁ)RAND-ABEL should be suitable for large, rule-bascd systems.

- Tt should lend itself to program development by
multimembor programming toams.

- It should be rolatively casy to maintain.(?'

-+ RAND-ABEL should be suitable for war gaming and multiscenario
sensitivity analysis.

- Domain-substantive RAND-ABEL rules should be rcadable by
domain specialists who arc not RAND-ABEL programmexs, and
the code should be relatively self-documenting.

- RAND-ABEL should be efficient in exccution. ¥°

* >RAND-ABEL should be suitable for usec by any of secveral
governmental gaming and analysis organizations.

- It should be transportable to various computers capable
of hosting the UNIX operating system.

The RAND-ABEL language was designed forzthe specific requirements
of the RAND Strategy Assessment Center (RSAC). The RSAC has chZI;BEabu
large system for automated and semiautomated war gaming in which

separate models represent U.S., Soviet, and third-country behavior.?
RAND-ABEL is a preprocessor for the C programming language under the
UNIX operating system, which makes RAND-ABEL quite portable &cross
different computers._ RAND-ABEL is very fast in execution time compared
with other languages éf similar rcadability. We estimate that C
language programs execute no more than three times faster than

comparable RAND-ABEL programs. _9/(// N

lSee Davis and Winnefeld, 1983; Davis, Bennett, and Schwabe, 1988;
Davis, 1988; and Davis and Hall, forthcoming.

_vi.-

In the RAND Strategy Assessment System (RSAS) environment,
RAND-ABEL {s used with a dato dictionary, a data editcr, and support fox
coroutines. This allows a flexible, hierxarchiczl modoling system,
allowing human teams to replace some of the modals. Although designed
foxr the RSAS, we anticipate that RAND-ABEL will be of interxest tor other
spplications on UNIX systems requiring a highly readable langusge, fast
performance, and carly discovery of crxors (for example, in tha design
of large rule-based modols and simulations).

The RAND-ABEL language provides a numbor of unique capabilities,
including support for tables within the source code. Tables can ba used
us decisjon tables or to govern an itorative exccution. Wo find that
tablo statements provide a much moxa succinct and readable alternative
to long secquencos of sentence-like xules typical of rxule-based
languages. Whon used as decision tables, RAND-ABEL tables corxrzespond
closely to the decisjon trees analysts and reviewers use in working out
a logically complete argument. RAND-ABEL tables have a syntax that is
inhexently two dimensional.

RAND-ABEL is a strongly typed language, permitting certain types of
errors in complex programs to be uncovered carly. Many of RAND-ABEL's
features arc derived from constructs in the C programming language.

- vii -

ACKNOWLEDGMENTS

Jean LaCasse tested the RAND-ABEL Translator's robustness and
diagnostics at various stages, holped dabug some of the cade, and wrote
preliminary documentation.

Soveral othor membors of the RAND Stratogy Assaessment Center (RSAC)
staff have made valuable suggestions regarding RAND-ABEL syntax and
requisite foatures. These include Steven Bankes, Arthur Bullock, Paul
Davis, William Jonaes, Christe MeMonomy, Ross Quinlan, and Horbaert Shukiar.

We especially wish to acknowledge strong snd continuing support for
thae development of the RAND-ABEL language by Paul Davis and Herbert
Shukiar of RSAC. Paul's stubborn refusal to be satisfied with anything
less than our best effort at meeting RSAC's recal needs, Herb's affoctive
and knowledgeable guidance, and their allocation of resources to RAND-ABEL
when its future was uncharted are responsible for RAND-ABEL's success to
date.

-1;-

CONTENTS

Frﬁ?ﬁca L N N N N N N N N R R N NI NI NN iii

SU””ARY ® 28 ¢ R U SSS0EN NN EERIEIEEIETIRNINELIENSETUTISEIS

te a0t V

ACKanLEBGHExTS 48 05T P B LEL T LEETOILTENEET FIRENELIILEOEEEISEOEIONSTIOOS vii

Section
Il I'\‘Tﬂonuc.rlox 9 e e b0 s acge L3R T B B B N S N B B I R N N BE BE RE N N NN B AR BN RN BN R AR BE AR AN N
Notational Conventionsceececsesacnsnsscoronosnsanss

W

II. NAMES, IDENTIFIERS, WHITE SPACE, AND COMMENISoco.venn 7

Names and IdentifiGrS ..viiiiicettirierretartarttcnsananns . 7

A Note on White Spaca and Comnents ..ovvevvercsossanssens 9

TIT. DATA TYPES .t iivverrnuvrnenenerroanesnsosassusacronssnacanss 11
Basic Data TypeS .«vcvvnenvnacannan Ceerssaatesasencenneen il
Enumerated Data Types Cesterreacenecsrannaanooanare 13

IV. VALUES, EXPRESSIONS, AND OPERATORS ..ivvveennirncsnenconens 16
Values and Simple Expressions vecensne N 16
OPQratorsS .iveeersocsassrnnss ceeenaan Cetaessesatssanaess 20

V. DECLARATIONS . iiiiivniinvenrnonssntnsnarnsssstosasnnenssnnn 28
To Declare a Variableccveveveennans Cererrtrerseeans 28

To Declare an AXXaY .civvensnnocsnnanss thtersetsraenann 29

To Declare a Functfon ...ovvvniciiinnrnnnnn feercanes ceens 30

VI. FUNCTIONS «iiiveenrncnnsnns Ceresereseratarrans esretiens o 33
Dofining @ FUNCLION s .hvciiintcnnnesensnssncorensenanns a3

Named Function Calls and Functjion Invocntions Ceees 34

VII. RAND-ABEL STATEMENTS eenes Ceete.tesasienann .. 37
Assignment rteenseseaenernsaranennns Cersesans cesen 37
Conditional Executionvieiieiriesvrnscorsssnscanse ceus 39
Repetitive Execution00. Cerees Cearhbireseiarana 40

Table STATEMENT . i.tvrttniorrentensroessnsrescrassssanns 43
Functions: Invoking and Exitingc.ovviiinnnnnnennen 50
InpiC/OUCPUL toveiiiienonnenoneossassnscernsssonseananns 52
Compound and Null Statementsc.covvvenvnnns Cerireanns 59

VIII. META=STATEMENTS i ivieriinrreeereannrosoneatnarosensonsnsnns 62
7L Y o3 ¢ Y S 62

InClude ..iviiiiinieeieneinonoanaesrenenrerrersasnsannnn 63

Debugging: Trace and Untracecevievnnrenreeansanans 64

IN. DATS DICTIONARY teicirueerecotnesencasoranssasasssnceasnns 65
Dafining Declarations ..vvsecvesersosssccassasctcancnnns 67
Identifying Declarations ..cvcevuveervsvesvensaricncnnns 72
Informative DocIarstions ..icccevviroisctotacasirensrnns 72
Croating and Removing Defaulet Declarationseveee. 73
Exo=pls of a Data Dictionary Declaration Section 75

N. COPROCESSES tiivvrvencnnnsnnrsasrnrsrasanasossoassncssanss 76
Croating a COPrOBESS +ivervrovesscscssercrsonsnnssnesans 76
Putting a2 Process To S1eep . ccvivciiiesritiiitiininnans 76
Torainating 4 COPrOtESS eeceveccoreresntostvstansssnsss 77
Reserved Coprocess Variables: Solf and Parent 77
Rules for the Use of Coprocasses ..ccuieceecsaccnnrnsnses 7?7

NI. TOP-LEVEL RAND-ABEL DECLARATIONS, DEFINITIONS, AND
ST{\TENEC\TS O N N I RS A A A I S LRI A B AR SR O U B BRI A 2R IR B B R O I B B A

APPENDINES
A. LOCAL SUPPORT ENVIRONMENT FOR RAND-ABELccovvennenes
B. QUICK REFERENCE GUIDE TO THE RAND-ABEL LANGUAGE cos
INDF‘X R R R R e I A I I I S A AR I I B A B I A I B B L R NN A

BIBLIOGRAPHY R R ceevavsennoe Ceetsarteatnerens

I, INTRODUCTION

RAND-ABEY, is a computer pregramming language implemented on the
UNIN' operating system. A program called the "RAND-ABEL Translatox"
compilas RAND-ABE)L stavements into a C program (Kernighan and Richie,
1978), which is in turn compiled and run.

RAMD-ABEL was daveloped at the RAND Strategy Assessment Conter
(RSAC), to be used in the devalopment of complex models. Six primary

dasign goals guided tho development of RAND-ABEL. RAND-ABEL is intended
to bu:

* Reasonably sclf-documenting. Tho RAND-ABEL code, by itself,
should convey the meaning of a program.

* Undoxstandable by English spoakers familiar with the subject
wattex. Roaders of the program should not need detailed
programning knowledge to comprehend tho program.

* Reasonably casy to leaxn and usc by individuais with good
analytic capability and modest programming skills. Analysts
and application specialists with only some prior experience in
a high-level programming language, such as FORTRAN, should be
able to program cffectivaly in RAND-ABEL without oxtensive
training and study.

* Rapid in execution. Since RAND-ABEL was specially designed for
building rule-based programs with many qualitative variables,
it is important that these large programs be able to execcute
rapidly and efficiently.

* Portable across different types of computer hardware.
RAND-ABEL and systems doveloped in it should not be unique to a
single computer or manufacturer's computers but rather be
portable across a range of minicomputors and powerful
microcomputere.

* Supportive of specialized needs of the RAND Strategy Assessment
System (RSAS), such as coroutines and tabular data, and well-
suited to the creation of complex simulations by groups of
developers.

lUNIX is a trademark of AT&T Bell Laboratories.

-2 -

Although reading and changing RAND-ABEL programs is relatively 2asy
and within the capabilities of many analysts who know some other
computer language, some RAND-ABEL programming, such as changing the RSAS
Dacta Dictionary, raquires rolatively high lavels of programming skill
ond knowledga. RAND-ABEL is not unique in requiring high skill levels
in oxder to exploit the full capabilities of the lang‘'age; however, its
friendly readability ecan give an orroncous impression regarding
writabilicy.

Prior to the deveiopment of RAND-ABEL, tha RAND Strategy Assessment
Conter used the ROSIE? language (Fain ot al., 1981) for programming the
Scenario Agent. The ROSIE program reproscating the Sconario Agent of
the Mark IT RSAC system is documentazg an Schwabe and Jamison (1982). We
found that ROSIE was too slow for our futurc nceds, which included
operating large-scale simulations in a matter of minutes. Also, wo
sought special foaturos such as docision tables that were not likely to
be available in ROSIE. Thorefore, RAND-ABEL was developed as a saparxate
language.’ Navertholess, much of the foxm and style of the statements in
RAND-ABEL deorives {rom its ROSIE heritage. Bucause analysts were using
only a portion of the fcatures of ROSIE, it was possible to design
RAND-ABEL as a simpler lenguage.

The goals of speed in oxecution and portability were achiasved hy
writing a RAND-ABEL compiler (called the RAND-ABEL Translator) that
translates RAND-ABEL statements into statemsnts in the C language.
Because C and its host operating system, UNIX, are available on many
different computers, RAND-ABEL is similarly portabie. In addition,
efficient C language compilers axe available, thereby permitting the
cfficient compilation of RAND-ABEL statements through this two-step
compilation process. As a result, RAND-ABEL can be used on any computer
running the UNIX 4.2bsd operating system and having a C language
compiler. Moving RAND-ABEL to later versions of AT&T's UNIX system
should be trivial.

zROSII-S_is a registered trademark of The RAND Coxporation.
}The history, rationale, and design of RAND-ABEL is described in
Shapiro et al., 1985.

-3 -

RAND-ABEL has proven to be oxcoptionally uscful for knowledge-
based modeling and has been used to generato approximately 250,900 lines
of code represonting models dealing with political-militaxy
doecisionmaking, situation assessment, command-control, and adjudication
of rosults of force intoractions. It should be noved, however, that
RAND-ABEL is a procecdural language and doas not have an "inference
angine." Yt is therefore quite suitable for ropresenting knowladge of
¢ form If <situation> Thon <action>, but it doss not have the
particular inforencing capabilities of, for example, LISP, PROLOG, and
ROSIE.

RAND-ABEL {s a strongly typed langaage; that is, the properties of
all identificrs arc declared before they uaroe used. The RAND-ABEL
compiler uses these properties to test the validity of RAND-ABEL
statements so that certain types of crrors (particularly control-related
and data-rclated arzrors) may bo caught at tho caxliest possible time.

The RAND-ABEL language contains a numbar of novel featu: es.

Perhaps the most novel construction in RAND-ABEL is the teble statement,
described in detail in Scc. VII of this manual. The following is valid
RAND-ABEL code. (In this and other examplaes within this manual,
RAND-ABEL keywords are printed in boldface to distinguish them from
identifiers, constants, and comments chosen by the user to describe a
particular application. Comments appear within square brackets.)

Table Deploy
[{This table orders deployment of forces)

quy ##-% unit-type unit-owner to-areca
20 % Troops Denmark CEux-res

20 % Trocps Netherlands CEur-res

20 % Troops FRG CEur-res

1 {# Troops UK CEur-res

All RAND-ABEL tables consist of column headings followed by rows
containing data. In this example, therc are five columns. The meaning
of the top row of the table, as defined by the Deploy function, orxders

20 percent of the troops "owned by" Demmark to deploy to CEur-res

-4 -

(Central Europcan theater rasorxves). The table calls the Deploy
function four times (once for cach rcw of data) with five paramecters
(corrxasponding to tho ontxy in cach column of the table). On the fourth
call, one division of British troops (the "#" moans number, rather than
percent) arc deployed.

The table statement iIs a powerful davice, capable of both defining
jterative processos and creating decision tables. Its syntax is fully
two dimensional. A function call or RAND-ABEL statement (possibly a
compound statement) occurring immediately aftoxr the table keyword is
called once for cach row in the tabla, with the table's column headings
baing parsed and matched with function paramoters oxr variables in the
statemoent, The table statement was developed becduse tablos of
information are commonly used by many types of plannexrs and analysts.

A sccond noteworthy featurc of RAND-ABEL is "declaration by
example." All idontificxs are declared by giving cxamples of their use,
usually by an assignment statement such as:

Declare message by example: Let message be "I have Checkmate'.
or more bricfly
Declare message: Let message be "I have Checkmate".

which declares the variable "message" to be a character string. In this
manner, the data type associated with an identifier is declared without
requiring the use of a whole vocabulary (e.g., integer, rcal, character
string, Roolean, process, cnumerated variable, array) that may not be
meaningful to analysts who are not professional programmers.
Furthermore, it is especially useful in rule-based systems with many ad
hoc data types that otherwise would require names for strong typing
(i.c., the data types to which enumerated variables belong).

RAND-ABEL also has a built-in set of functions to handle coroutines
and a "data dictionary" to coordinate external data references among
program modules being developed independently. These language features

are discussed in Secs. IX and X of this manual.

NOTATIONAL CONVENTIONS

(2]

This manual prxesents the form and content of the RAND-ABEL
programming language. In doing so, it must use a sect of stylistic
conventions to represcnt RAND-ABEL's foxm. These conventions must not
ba confused with the form of the RAND-ABEL syntax itself. The
conventions used in this document are:

The RAND-ABEL language xelies on a numbexr of special keywords,
or rescrved words, which have a particular meaning. Appendix B
contains a complete list of RAND-ABEL keywords. As mentioned
carlier, in this manual RAND-ABEL keywoxrds arxe printed in
boldface, to distinguish them from other language constructs.

In a RAND-ABEL program, thesc koywords must be written in lower-
caso, with the first lettex optionally upper-case. Thexefore,
the only two valid ways of writing a keyword are:

Declare, declare

This same casc frcedom does not extend to RAND-ABEL identifiers
or character strings. The variable name "Countxy" is distinct
from the (dangexously similar) name “country".

The syntax of RAND-ABEL is sometimes best dascribed in terms of
o sct of syntactic categories, which themselves have & dafined
strxucture. These syntactic categories are represented by a
word or phrase in italics, like expraession. What is allowed in
place of these categories is described in various sections of
this manual. To find the definition of one of these
cetegories, look under that category in the index to this
manual; it tells on which page that definition occurs. A list
of syntactic categories is given in Appendix B.

To represent a sct of options, onc of which must be chosen, we
use a single-spaced vertical stack of options. For example,

Trace If.
Trace Functicn.

This notation means that the TRACE statement can take the forms
"Trace If." or "Trace Function.". To represent a continuation
of the previous line, we indent the second part of the
definition. For example,

Declare variable-name:

Let variable-name be expression.

-6 -

Let variable-name be ifdantififor constant.
Let variable-name be cnumarated variabla.

indicates that the phrasc "Let variable-name be" is a required
part of the Declare statement, and that it must be followed by
a ropresentative of one of the three syntactic categories
listed: expression, identifler constant, ox cnumarated
varfable. Onc valid form of tho Declare statement is thorxcforxe

Declare variable-name: Let variablo-nasie be expression.

4. Ellipses (i.e., "throe dots" notation) are used to vepresent a
sequence of zoro ox more RAND-ABEL constructs. Fox example,

statemont . . . statomont

means that zero or more statements can occur in 4 sequence. By
extension, if a delimiter is used after the fixst occurrance
and bofore tha second occurrence with the three-dot notation in
between, it means zoro or more instances of thai construct can
occur in scquence, scparated from cach othexr by that delimiter.
For oxample,

nama) \d * . ’ namo

means that zero or morc RAND-ABEL nazes can occux, separated by
commas (the delimiter here). When ONE or more octcurrences arxe
required, the above notatjon is somctimes used for convenience,
with a nocs immediately below the syntax diagram stating that
restriction.

5. The strunture representing a paxrticular RAND-ABEL language
category is boxed so that it can be found casily. Rules
specifying various restrictions and notes rogarding this
structure then follow. The particular syntactic category being
(perhaps parcially) defined is shown within the top boxderx of
the box. For cxample:

t-Statament - ===~ =-=emsmecmeccnecemmcmmcseesesecsecsescsssesennae +

If Boolean-expression Then statement |

If Boolean-expression Then statement Elsc statement |

. NAMES, IDENTIFIERS, WHITE SPACE, AND COMMENTS

NAMES AND IDENTIFIERS

The enticies of a RAND-ABEL program (e.g./variables) have names.
Each is represonted by a RAND-ABEL Jfdentifior, which is composed of a

scquence of one oxr moxe of tho following charactors, without intarvening
spaces:

upper- and lower-case lecttarxs (A-2, a-z)

digits (0-9)

the hyphen (-) (or its synonym, the undexscoxe (.))

the numbor oxr pound sign (#)

the porecent sign (%)

the plus sign (¥)

the ampoxsand sign (&)

the slash (/)

the perdod (.)

Rules:
1. An identifiexr cannct end with a peried.

2. An identifier should not begin with a hyphen (-), its synonym
undexscore (.) or a period (.).

3. An identifier cannot extend over a line of text (i.e., it
cannot contain a carriage-return or linc-feed chavacter). It
also cannot cxtend over a line of text by being hyphenated;
the hyphen {s treated just as any other character. (An
identificr used as a column heading in a table statement is an
cxception to this rule. Seo the discussion of the table
statement in Sec. VII.)

4. Upper-case letters are distinct from lower-case letters within

identificrs; for example, the following identifiers represent
differcent data items:

Country, country, COUNTRY, CounTry

Within RAND we recommend a programming style an which global
varigbles are capitalized and local variables are not. For
instance, "British-mood" indicates a global variable, while
"british-mood" signifies a local variable. It should be noted

that this is a programming convention, not a requirement of
RAND-ABEL syntax.

-8 -

5. A scquence of characters mocting the above xestrictions, and
intended as an identifiex, must also not be recognizable as
anything alse, such as an integer or real numbor.

There is no restriction on length, other than the ons-line
limitation (Rula 3 above).

1% should be noted that various text formattoxrs in use at RAND and
olsewhere interprot a pariod (.) in column 1 as a specinl formatting
instruction, thereby causing problems {f that i{s not intended. No
RAND-ABEL statement begins with a pariod, but one could inadvertently
appear in column 1 if an ideontifior begins with a period and a statemont
is continued onte a following lina, causing an identifier to appear
first on the succeeding line. Tt is safest not to start any identifier
with a period.

The C compiler generates variables that begin with initial hyphons
(-) and initial underscores (.). To preclude the possibility of
confusion, it is rccommended that RAND-ABEL identifiors avoid this
usage: Jj.c., do not begin an identificr with a hyphen or an undexscora.

Examplos of valid RAND-ABEL identifiecrs:
country
Order-WIVD1-force-ussignment
assumptions-re-Europe-On-Call
84fligheft-2

An identifiex, having the form dascribed above, can also be an
"identifier constant” as a member of the range of an enumerated data
type. Sece Scc. III for more information on cnumerated data types.

In RAND-ABEL variables and functions may be assigned attributes
such as ownership. Variables may be global, owned, or local; functions
may be owned or global. The majority of variables and functions in the

RSAS are owned. Ownership is described in detail in Sec. IX.

-9 -

A NOTE ON WHITE SPACE AND COMMENTS

RAND-ABEL statements and definitions consist of a sot of words,
soma of them resexved keywords, some of them names (of variables,
functions, ate.), and some of thom unoxecuted noise «words or comments,
made up by the program's author. The following xules hold in writing

RAND-ABEL programs. Since RAND-ABEL is built upon the C language, the C

conventions for program forxm should be followed in case of uncertainty.

Form Rules:

1. One or moxe spaces separating RAND-ABEL language constructs is
considered to be "white spaca” that acts as a separator. Any

comment enclosed by square brackets is also considered to be
vhite space. Exumples:

Let {the vaxiabla) Countxy be US.
Let{the variable]Countxy be US,

Both of these statements are equivalent to the statement:
Lat Countxy be US.

White space occurring within a RAND-ABEL table header hes
special meaning; cthese rules do not strictly apply within it.
See the subsaction "Table Stetement" in See. VII for further
information.

184

Carrisge returns or line feeds aro ecquivalent to space
characters in crecating white space; they have no other
syntactic or semantic meaning. Examples:

Declare [the function] plan by example:
Let [thal plan of US, [the origirator)
{in] 1984, [the time poriod)
[within] Europe [the locale]
be Defend-borders.

The above statement is cquivalent to the statement:

Declare plan by example:
Let plan of US, 1984, Europe be
Defend-borders.

- 10 -

Spaces and other characters occurring within a string enclosed
in double quotes (") ara taken literally and are not considered
white space as the texm is boing used in this discussion. For
further information about charxactor strxings, sce Scc. III or
the syntax of character strings in the C langwage definition.

Also, spaces axe treated specially within ctable heoaders. Sce
the discussion of the table statement for further inforxmation.

- 11 -

It1. DATA TYPES

BASIC DATA TYPES

The RAND-ABEL language recognizes nine basic data types. In
addition, the use of cnumcrated data types and the ability to create
pointers and arrxays allew the usar to constyuct an arbitrary number of
additional data types. Every simple variable, value, and expression in
the language is of one of these data types, eithor through explicit
declaration or (in the casc of expressions) by doxivation {rom the foxm
of constants and the prior declaration of variasbles used within them.

The nine basic RAND-ABEL data typas are shouwn on page 12.
Integer, real, string, Boolean, process, and stroam data types axe buile
into the RAND-ABEL language. Enumerated data types, pointers, and
arrays are constructad data types. Process and styeam data types are
usually haxd-wired fnto RSAS undorlying code where casual users do not
encounter them.

Strong Typing

RAND-ABEL is a "strongly typed" language. ‘that is, the data
variables, values, or cxpressions on cither side of an assignmont
statement, or binaxy opersxdr, or used in place of a function's formal
parametex, must agree. This strong typing is possible becausc all
identificrs must be declared explicitly prior to use, thereby
associating the identificr with a data type (oxr in the case of a
structure or function, a scquence of data types). The RAND-ABEL
transla.or will flag a statement as being in exrror if there is a
mismatch of data types within the statement. (The only exception to
this statement rclates to the integer data type as explained under
"Comparison Operators" in Sec. IV.)

-2 -

Data Type Description ____Examzlo(s)

1. Integer? Whole number with + or 1, -3567, 0, +45
- profix optional (no
intervening space) and no
docimal point explicitly
given.
2. Real? Decimal numeric value with 5.34, -.0079, 0.0, 8.
+ or - prefix optional (no 6.02 £ 23 (= 6.02 x 10%%23)
intexrvening space) and with 4E3 (= 4000.0)
8

decimal point explicicly -3 (= .004)
positioned.
3. String’ String of zero or wmore :élly is not responsive."

charactors dolimited by
quotation marks,

4. Boolean A logical data itom Yes, No
that can take on only
ocne of the two valuoes:

Yes, No.

5. Enumerated An explieit, finite-ordered Red, Blue, Green
list of values, consisting USA, France, FRG
of RAND-ABEL identifiexs.

6. Arxay A table of values of one or

moxa dimensions, indexed by
integors and/or cnumerated
data type(s).

7. Pointer A variable whose value is
the address of a variable
or function.

8. Process* An identifying number for a
RAND-ABEL coprocess. Two rosarved
RAND-ABEL keywords represent the
current procass (Seif) and
its parent (Parent).

9. Stream Output file pointers. log-fils

‘Integers are implemented in RAND-ABEL as the C language data type
"long int", and arc thercfore subject to C restrictions for that data
type.

IThese numbars must have a decimal point contained in them, ox use
"E" (oxponential) notation to represent a power of 10. If thoy use "E"
notation, the number following the "E" must be a whole number. Since
usc of the E operator could be construed as part of an identifier (e.g.,
in 4E3 or ecven 4.0E3), it must be scparated from its arguments by white
space as shown in the examples above. Real numbers are implemented in
RAND-ABEL as the C language data type "float", (i.e., single precision
floating-point numbers) and are therefore subject to € restrictions for
that data type.

’A stzing may be up to 256 characters in length and may contain
cmbedded special characters such as carriage returns and line feeds.
These arxe specified by the special escape sequence backslash (\), such
as \n for line feed (sece "Format Specification" in Sec. VII). The
normal syntax and rules for character strings in the C language apply
for character strings in RAND-ABEL.

“How coprocesses are started and manipulated is described in Sec. X.

- 13 -

In fact, tho strong typing goes considerably decper for constructed
data typss. GConsider the following cxamples:

* A pointer is declared to point to an array of recal numbers.
The array hes two indices: an integer and an enumerated data
type. All assigoments of this pointer to other data constructs
must retain all of these characteristics: a two-dimensional
array storing real numboxs, indoxed by an integer and that samc
cnumorated data type, raspectively.

* A functicen {s declared to roturn a process as its value and
has throac¢ formal parametors: a Boolean, a character string, and a
pointer to an arrxay having the characteristics given in the
previous oxample. All calls on this function must mecet all
these data type constraints, including the coxrect data types
on the indices and stored values of the array pointed to by the
third paramoter.

ENUMERATED DATA TYPES

In addition to the six buflt-in data types, additional data types
may be constructed by the following mechanisms: cnumerated data types,
arrays, and pointors to various data constructs.

Enumcrated data types are constructed by definitions of the
following foxm:

Define Enumeration Type-countxy: France, Germany.

This defines a ~ew data type, Typo-country, that can take on
exactly two values: the jidentificrs France and Germeany. Those values
will be called "identifier constants" within this document.®

*Definitions of enumecrated data types axe always made in the Data
Dictionary files. (See Sec. IX.)

Enumerated types axe used in declarations® of the form:

Declare country by example: Let country be Type-country.
Declare Maginot-line: Let Maginot-line be Type-country.

These declarations croatu the two distinct variables “country" and
"Maginot-line" that can cach take on only the values listed in the
definition of Type-country: aither "France" or “Goxmany". (See Sec. V
for a description of declaration options.) Tho phrase by example is
optional. It should be noted that a deelaration is NOT an assignment
statement. In the above examples, neithor variable has any value yot.

Enumarated data types axe simply data types that teke on an
explicit, finito-oxdored list of values. The values arc simple
RAND-ABEL identifiers. In tho above example, because France is listed
first, it can be said to be "less than" Germany. This proporty can be
used ef{factively in conditional statements whon a specifie portion of
the list of the enumerated data type ncods to be referonced.

The only way an identifier constant {s established is by the
declaration of an cnumorated data type, including that identifier
constant in its range (L.c., as part of the specified list). The sot o
valid jdentiffer constants is given in a definition of the form:

Define Enumeration Typa-color: Red, Green, Blue.

In this cxample, "Type-colox" is a new data type, and “Red," "Green,"
and "Blue" axe the (only) identificr constants in its xange.

There is onec rescrxved cnumerated value that is a member of all
enumorated data types, cven though it is not axplicitly listed. It is

4

the value Unspecified. Any enumerated data type can take on this value.

The value can be explicictly given to an enumerated type through use of
the keyword Unspecified (or its synonym "--'') used in place of an

‘Declarations using cnumerated data types are usually made in the
Data Dictionary files, unless the variable is a local variable. For

local variables, declarations are made in the xelevant RAND-ABEL source
code.

- 15 -

identifior constant in an assignment statement. Note that it is NOT
automaticolly assigned by RAND-ABEL, howaver. Enumerated types have NO
valus before one is explicitly assigned (i.e., Unspecified is NOT the
default valuc for cnumerated types).

All cnumerated data types are distinct from one another.
Thorefore, the value of ono cnumerated data type cannot be assigned to
another (hacause this violates the "strict type checking" rule that only
the same data types may be compared, assigned, or operated on together).
Furtharmore, all identifier constants are distinet from cach otherx. For
example consider the two declarations:

Define Enumeration Type-color: Ked, Green, Blue.
Declare color: Let coloxr be Type-color.

Define Enumeration Type-mood: Aagry, Slue, Querulous.
Declare mood: Let mood be Type-mood.

If the two assignmont statements wore cexecuted:

Let color be Blue.
Let mood be Blue.

then not only i{s it NOT true that the valuc of color cquols the value of
mood (because the two Bluas axe distinct identificr constants), BUT IN
ADDITION, THEY CAN'T EVEN BE COMPARED, as in:

If color = mood Then ...

because, as stated carlier, color and mood axe two distinct data types,
and therefore it is illegal to compare them.

- 16 -

IV. VALUES, EXPRESSIONS, AND OPERATORS

VALUES AND SIMPLE EXPRESSIONS

In & progromaing languago, & value is informally considercd to bs a
simple term that can ba evaluated to yield aither 2 storsge location or
the contents of that location. If it appears on the lefthand side of an
assignment statemens, its avaluation yields a location at which the
assignment i{s to be made; If it appoars on tho xighthand side of an
assignment, or clsewhero, its cvaluation yields a data value. The
deseription of the syntax of RAND-ABEL ralies on the following
categories of values and oxpressions, which are explained in this
seetion:

Name) Informal meaning

aArray-access Access to the valuo stored at onc
of the cells in an axray.

Ivalue A reference that can appear on the
lefthand side of an assignment
statement; that is, it designates
a storage location at which a value
is located.

unitparam A value chat is assigned to a paramecter
in a function call. A simple value,
or clse a parenthesized expression.

simple-aexpr Any of the above values, or in
addition a pointer to a function.

expression A value, or a scquence of values
rclated by operators.

The following tables give more precise definitions for these terms,
nested to show the mannexr in which some definitions include others. For
example, since the boxes defining unitparam end lvalue are contained

within the box labeled simple-expr, all of the varieties of unitparam

nl?-

and Ivaiue (dofined by tho contonts of their boxes) can be used wherever
a sdaple-expr is nceded. Similarly, the various types of array-access
can be used whenever an Ivalue is naeded.

a2y o (- R b L D +
Report from function-invocation

Evaluate unicparan . . . unicparan
Evaluate with format-spec unitparam . . . unitparam |

unary-operator expression
expression binary-operator cxprossion

simplo-expr

o oo e s s e e e e e e e e

Rules:

1. The Report from function-invocation expression calls the named
function and retuxns as its value the value returned by the
function. Example:

Let mossage be Report from plan of US, 1984, Europe.

2. The Evaluate expression allows the RAND-ABEL writer to genecrate
a string of characters (usable in further RAND-ABEL processing)
from a scquence of arguments, cach of them a unitparam. This
string may then be used in subscquent RAND-ABEL statements, for
example, as an argument to a function that requires a string as
one of its parameters. The format-spec is a string of
characters that can control the formatting of the resultant
string; the syntax and cptions available for a format-spac axe
described in the subsection “"Input/Output" in Sec. VII.
Example:

Perform data-logging
using Evaluate "The ally of" country "is"
(ally of country)

as message.

- 18 -

In the above example, note that blanks are not required within
tho character strxings to prevent the value of country from
running inte "Tha ally of" and "is"; this is because the
default print format for an enumerated variable contains prefix
and postfix blanks. (Scc "Defauit Output Formats" within the
"INPUT/OUTEUT" subscction of Sec. VII.)

A simple-oxpr is dofincd by the following nested sct of tables.
The nusting again shows that certain terms are contained within the
definitions of otha.s. For example, a unitparam is ona valid type of
siaplo-expr, so any of the methods of constrxucting a unitparam can be
uscd wherever a simpla-oxpr is nceded.

-!--s_x'np]a-expr --- +
Function function-name

+-UnItparan-=====-e-s=cesceucecmsemmcmesescmmnonecess-=- +
| |
Yes |
No
enumeo . ated-value
nugmeric-litaral
| quoted-string
variablo-name |
Unspecified

121
(expression)

=lvalug-==--====mcvmcmemcncmucmemmemonsoscscannaana- =====t
variablae-name

Value of variablae-nama
Value of array-access

Pointer to variabla-nama
Pointer to Attribute array-name

e e e e e e e s s s e . e S S e o e e <}

3= A C—— S S— —— —— S— — E— T — —— G C——— — f——

+-array-accaSS === mmmmmemmemmcessececeseceemoon + |
i I
\ array-name of simple-oxpr , “ e |
| in , and | |
| by . and | |
| I |
| y SiImple-expr | |
! , and | |
| | |
L T T T il L L L L L + |
T T TR L L T T e e L |
s S o S g +
Rules:

1. The Function keyword, followed by the name of a RAND-ABEL
function returns as its value the address of that named
function. This returned value is of type pointer. Note:
Function is an alias for Pointer to.

- 20 -

2. "--" is a synonym for the keyword Unspecified, which is used in
conjunction with cnumerated data types. (Sed the discussion of
cnumarated data types in Sec. III.) In tables, the "don't
care" symbol "' {s also available.

3. The variable-nane ox array-access following the keywords Value
of' must be of data type pointer. The clausc returns the
contents of the storage location pointed at by that peintox.

4, The Pointer to? clause yields a value of typo pointer. For
example:

Pointer to Attribute country-array

roturns a pointer to the array named “country-array".

OPERATORS

The operators used to constrxuct exprassions can be categorized as
numeric operators, comparison operators (providing cquality and
inequalicy tests), logical opcrators (yielding a Yes or No result), and
string operators. Each of these categories is described below. In cach
case, we list a "proferred form" for ropresenting these operators to
create as much consistency ond readability in RAND-ABEL programs as
possible.

The Value of keyword is identical in meaning to Occupant of used
in carlier versions of RAND-ABEL. Both keywords are currxently
supported, but Occupant of is being phased out.

3The Pointer to keyword has the same meaning as Address of in
carlier versions. Both keywords are currently supported, but Address
of is being phased out.

- 21 -

Numeric Operators

Mathematical
Notation "English-1like"

(Proferxed Form) Notation Moaning
+ plus Addition
- minus Subtraction
* times Multiplication
/ divided by Division

modulo Modulo

- negative unary "-" sign

When an integer variable accepts the result of the division of two
integers, tha result will be truncated towaxd zoro to an integor.
Examples:

73/10 evaluates to the value 7
-73/10 evaluates to the value -7

Division by zero results in a run-time error.
These operators can yicld floating point oxceptions (i.e., crror
conditions) in a machine-dependent manner.

The modulo operator returns the remainder upon division. Example:
23 modulo 8

is 7. The modulo operator requires integer arguments.
Only integer and real data types may be used as arguments for these

operators. (Exception: the more stringent requirement for modulc

- 22 -
Comparison Operators

Comparison operators are categorized balow as "equaliey" or
"incquality” typec operators. All comparison operators yiecld a value
that is Boolean. It is pormissible that one of the operands to thase
comparison operators have an ambiguous data type, IF that ambiguity can
be rosolved by the requirement of consistency with the othex oparxsnd's
data type. RAND-ABEL does not, however, accept two operands of
ambiguous data type and attempt to resolve the mutual ambiguity.
(Ambiguity can arisc from a value like the identifier constant Blue, if
moxe than one cnumexated data type contains this constant in its range.)

Equality Tests

Machematical
Notation “English-1ike"
(Proforred Foxm) Notation Meaning
= is Is cqual to
~= is not Is not equal to
are not

Both arguments to these operators must have the same type (with one
exception: an integer appearing wherxe a real is nceded is interpreted as
a real for that purposea).

Two operands from any onc data type may be compared using these
equalicy operators.

Two strings are equal only if they have the same length (including
possibly zero length--i.e., the null string) and, at each respective
character position, their corresponding characters are cqual.
(Upper-case and lower-case versions of a character are treated as

different characters in this test.)

-23_

Two cnumerated values are cqual only if they axe represcnted by tho
same fdentifier constant and are in the range of the same (onumorated)
data typoe. It is an orror if two enumeratad values are gomparxed that
bolong to different (cnumerated) data types. The reserved word

Unspecified is the only oxception to this rule: Any enumeration may be
compared with Unspecified.

Inequality Tests

Machemazical

Notation "English-1ike"
(Praforred Form) Notation Maaning

»= is at least Greatoxr thon ox
squal to

<= is at most Less than or
equal to

> is greater than Greater than

< is less than Less than

Both arguments to thesc operators must have the same type (with one
exception: an integexr appearing where a2 real is neceded is interpreted as
a real for that npurposa).

The following data types may be compared using the inequality
operators: integer, real, string, cnumerated. Note that Boolean dota
types CANNOT be comparxed using these operators.

Integer and real data types comparc according to their values.

Sctrings a and b compare as follows. (Note: in comparing two
individual characters, the collating sequence for the individual
computer on which RAND-ABEL resides is used; this test is therefore
implementation dependent.)

-« 24 -

a. If a and b are hoth the null string, they ara sual.

b. 1f one of them is the null string and the othar i« i, st
the null siring is less than the other.

¢. Otherwise, compare strings a and b character by zharimtay; {2
cach of thesa comparisons is Yes (i.e., true) &7 the tims vhn
end of one of the strings is reached, but the ciha,. snp:ng
still has additional characrexrs, then the shortuxr s*viig ig
less than the longar one.

d. . lorwise, compare strings a and b character by chz.u.tey, if
«eh of these comparisons is Yes (i.e., true' up to ch acter
position k, but is No (i.e., false) at charav-o: position k+l,
then if string a's character in position k+l is less than, or
groater than, string b's character in position k+l, then string
a is less than, or greater than (respectively) string b.

Enumiiaved values compare with the inequality operator: according
to the following rules:

a. If cither or hoth valuas is Unspecified (or its synonym "--"),
then the result is No.

Y. If the valuas belong to different (enumerated) dara types, it
is an error.

c. ldentifier constant Cl is less than identifier constant C2 if
and only if Cl appcars before C2 in the sequence of identifiers
defining the range of their common (enumerated) data type. If
they are the same identifier within this data type, they arxes
cqual. For example, for the enumerated data type defined as

Define Enumeration Type-color: Red, Green, Blue, Purple.
comparisons will show
Red < Green

Purple > Blue
Green = Green

Logical Operators

Logical operators are used to combine two different Boolean
operands--that is, ones taking the values Yes or No--to yield a new
Boolean value. For example, a RAND-ABEL program might require the

logic:

If agreement and (Red-violates or Blue-violates)
Then Let agrocment be No.

The assignment of the valua No to the variable "agreement" will
take place only if the existing value of agrecement is Yes, and in
addition either "Rad-violatas" or "Blue-violatos" (or bozh) is Yes.

“"English-1ike"
sathemactical Notatien
Notation (Pxoaforred Foxm) Meaning
¢ and Logical "and"
| or Logical “ox"
~ not (unary) Logical

"ﬂo!:"

The meanings of these operatoxs axe givon by the following table:

1 | I
a b |] nota | aandb | aorb
-------- T T LT T T RS R R SRR
yes | yes || no | yes | yes
yes no || no | no | yes
no yes || yes | no | yes
no no || yes | no | no

The logical operators roquire Boolean values (that is, Yes or No)
as their arguments and roturn a Boolean value as the result.

Remember, Boolean variszbles are not cnumerations. That is, they
cannot be Unspecified. 1In tables, """ can be used to denote "don't
care" for Booleans as for any other data type. However, "--" or

"Unspecified" can be used only for enumerated data types.

String Operator

There is one string operator, which porforms concutenation of two
strings to yield one resulting string. Concatenation may bo used, for
example, in the crcation of tailored messages, as in:

Let ourstr be "WARNING: " $ message $ " PLEASE RESPOND (Y/N): ".

in this example, the string variablo "outstx" receives a string
containing a variable "message", along with standaxd profix and suffix

strings.

Mathemavical

Notation

(Praoforxed Form)

"English-1ike"

Notation Meaning

concatenated with Concatenation

Only string values may be

string consisting of the first

Example:

are all equivalent to:

"This
"This

"“This

“"This

is
is

is

is

concatenated together. The result is a
string followed by the sccond string.

n s Ila tcst-“
lls"n CQSC."

" concatenated with "a test."

a test."

- 27 -

There is a way to include values of other data types by converting
them to strings with the Evaluate statemuone as described under "Values
and Simple Expressions" at the begianing of this section.

Order of Precedence

Whenever there is any ambiiuity or uncertainty, parentheses should
ba used to specify the order in «hich oparators should be applied within
an oxpression. When more than ona operator is used in a sequence,
pracedence rolations are used to resolve the order. Operators with
higher precedence axe performed first; within the same precedence,
operators are porformed within the expression from left to vighe.
Opexators of the same proacedenco associate to the left. For example,

(atbite)y=((albh)&c)

The following table gives the pracedence of RAND-ABEL operators.
Operators in the same row arc of cqual procedence.

Highest precaedence: ~ (not) = (unary)
* / modulo
+ -
< > <= o=
t (and)

Lowest precedence: | (or)

- 28 -

V. DECLARATIONS

TO DECLARE A VARIABLE
t-declaration=~=======sc-scccmcrmrconccunnunaccatanrnccacaanaoana. -

Declare veriasble-naze:
Declare variable-naze by example:?

|

|

i

| Let variablo-nane be expression.

] Let variable-nasze be Jdencifier constant.
: Let variable-nazc be enumerated variable.
&

o v e S et s S e e

LA RS S A LR LRSS RIS RN SN EI RS E Y SRR YR s 222 2 R 22X S0 Y) -

Rules:

1. The cype of the variable bocomes the same as the type of the
expression.

2. The typo of the cxpression must bo uniquoly daterminable at the
time this statement is cncountored. (For axample, if cho same
identifior constant appoars in the range of several enumorated
data types, then it may not be used in oan assignment within a
declaration.) If Typo-color includes Red, Blue, and Green,
while Type-mood consists of lappy, Blue, and Querulous, then

Declare tint: Let tint be Green.
declares the variable "cint" to be of type “Type-colox", but
Declare tint: Let tint be Blue.
is ambiguous and therefore an crror.
Examples:
Declare troop-strength:
Let troop-strength be 10000.

Declare force-ratio:
Let force-ratio be 5.8.

Declare messago:

Let message be "Help!".

!The phrase by example is optional in a declaration.

- 29 -

Declare agroemenc:
Let agroement be Yas.

Declare current-force-test by example:
Let current-force-test be Function calel.

Declare alliance-membar:

Let alliance-mumber be France,

The spatial alignment of these statements IS not important;
thoy are aligned by variable name here merely for ease in

reading.

TO DECLARE AN ARRAY

The syntax diagram below shows how to declare & RAND-ABEL array.

Declare array-nane:
Declare array-nane by example:

Let array-nane of simple-expr ,

Let array-na=e in sinple-expr , and
Let array-naze by sinple-expr , and

be expression.

e e e e e e e e s e i e S e

Rules:

1. There must be at lecast one simple-expr.

-dec}ﬂracien ------ wsnmene D L L L L T T T Y TR e R P

N ¢ Simple-expr
.+« . , and siaple-expr

3
]
]
]
[]
1]
)
]
[]
I
[}
]
)
]
3
3
]
[)
]
1
[
'
]
[}
)
1
’
]
t
]
]
]
L}
)
1
)
1]
1
1]
1
[}
1
1]
]
]
[}
]
)
1
]
1]
]
]
3
1
'
)
]
)
]
’
]
)
)
t

............. +

e e s s St ey S S Gatn S — —— —

2. The type of the array is the type of the expression, which must
be determinable at the time this statement is encountored.

3. Arrays can have one or more indices. (Arrays with zero indices

are equivalent to variatles.)

- 30 -

4. The simple-exprs that are used to index the array must be
either of typs integer or enumerated.

5. If any index is of type integer, it is designated by a single
integor constant, n, in place of simple-expr. This index can
then take on the integral values 0 . . . n . Note that index n
means that the index can take on n+l distinct values.

Note that & one-dimensional array, indexed by the smallest positive
integers (1, 2, 3, . . .) is often called a “vectoxr" in some other
co=puter languages. A two-dimensional RAND-ABEL array indexed by tha
smallest positive integers corresponds with the term "matrix" in othaz
computer languages.

Example of an array with integer indices and enumexated value:

Declare chessboard-square:
Let chessboard-square of 7, and 7 be
Typo-chess-piece.

wiere Type-chess-piece has been proviously defined as

Define Enumeration chessboard-square:
king, queen, knight, bishop, xook, pawn, empty.

TO DECLARE A FUNCTION

Every function that is used must be declared. Every function
cither always returns a value, or never rcturns a value. The function
declaration ind{cates which of thesae cases applies, as well as the data
type of the arguments and value returned, if any.

- 31 -

R (G 18 o e DL LT

+
| Declare func-name:

| Declare func-name by example:

| Let expression be Report from named-function-call.

| Parform namcd-function-call.

I
g +

Rules:

1. The first form must be used when the function raturns a value.
The type of the expression must be the same as the type of
value roturncd by the function. The type of the evprossion
must be determinable at the time this statement {s encountered.

2. The socond form is used only when a function does not xoturn a
value,

3. A function must be doclared before it is dafined, and it must

be defined before any “.se. Sce See. VI for a description of
function definitions.

A named-function-call is one that explicitly uses the function name
to invoke it, not a pointer to that functien. See Sec. VI for a
description of named-function-call.

Examplaes:

Declare select-country:
Let France be Report from
select-country using alliance as range,
and strength as criterion.

Declare force-calc by example:
Let 5.0 be Report from force-calc using
France as country.

Declare validity-check:
Perform validity-check.

- 32 -

Functions may have parsmetors associated with thefir use. Each such
paramatoer is given a keyword that is used in the declaration of the
function, in its definition, and in all calls to tho function. The
pairing of this keyword with a value means that arguments to a function
can be listed in any order. Within the definition itself the keyword
behaves like a local variable that has been assigned the associated
argument valua from the function's call. Such keywords musz ba unique

for a given function, but can be (and frequently are) reused for other
functions.

- 33 -

Vi. FUNCTIONS

DEFINING A FUNCTION

RAND-ABEL has two typas of functions: those that xeturn a value
(always), and those that do not (ever). The function declaration
indicates which. A declaration is any of the declaration types
(starting with the keyword Declare) listed in Scc. V titled

Dec’ixations. It is an esscential part of the function definition.

+-function-defInftion======cemsvsceesoucmcecencncnencancananconyn=- +

I
| Define named-function-call : declaracion . . . |
| daclaration |
| statemont . . . |
| statecont |
l |
| End. |
| |
R SRS +

If the function roturns a value, at least one of the statemonts
within the function definition must be "Exit Reporting simplo-expr".
Morcover, one such statement must be rcached during cxeccution of the
function, otherwise a run-time crror will occur.

If the function does not return a value, it is exited cither by an
explicit Exit statement or clse by "falling through" the statements to
the End statement.

Local variables may be declared after the definition heading of a
function and before any executable code. These, along with any function
parameters (which are NOT declared in the function heading), may be
referenced like any other variable throughout the function body but are
not accessible to any other functions called from within that function.
A function may call itself, either directly or indirectly, but is given

a new set of local variables each time.

-3 -

Note that local variables may also be declared after the opening
brace and before any exccutable code within an internal program block.

Such a variable will be valid until the corresponding closing brace is
xeached.

Examplos:

Define Timed-wakeup:

If Time is at least Time-to-wake of (Command-id of sclf)
Then

(Record "Starting move at maximum time = " Time ".".
Exit Reporting Yes.

)
Else Exit Reporting No.
End.

NAMED FUNCTION CALLS AND FUNCTION INVOCATIONS

A named-function-call is an invocation of a function in which the
name of the function appears explicitly. It is required, for cxample,
as part of the declaration of that function (which announced the names

and data types of its arguments, and the type of its returned value, if

any).
+-named-function-call====-===-e=ccccocncncmccacncncraanarontnannaans +
| |
| func-name |
I l
| func-name using expression as param-name , . . . |
| for , and |
| |
| |
| ’ expression as param-nano |
| , and for |
I |
$ecememcmemcmccccamemmccccccccmecccmcemescccesceemmmeacecsaane==—a= +

- 35 -
Rules:

1. In a named-function-call, the func-name must be given

explicitly; a pointer to a functior is not allowed in this
casc.

2. W%hen used as an oxample in a function doclaration, the types of
cach exprossfon must bo determinable at the time the
declaration is cncountered.

By contrast, a functlon-invocation has the same foxm as a named-
function-call, but it can have a pointer to a function in place of an
explicit function name:

+-function-JInvocation===========m=c=c=cca- meemmsessscmcoseecsssenn- +
| I
| naned-function-call |
I |
| func-ptr |
[I
| func-ptr using expression as param-nace , RN |
| for , and i
| I
| e e, expression as parom-name |
| , and for |
| I
fommememesemmeme—eeeeeeeessesseemeeeeeeemeseeeeseeesmeeee-ee- —————— +

When a function does not return a value, it is invoked through the
statement

Perform function-invocation.
When a function returns a value, it is accessed via the expression

Report from function-invocation

- 36 -

Examples:

Let message be Report from next-move
using pawn as whites-last-move-picce.

If Report from Timed-wakeup
using now as time is Yes

Then Perform Work.

Else Perform Exror-handler.

If function-to-porform is a function pointer, then

Let function-to-porform be the Function next-move.
Perform function-to-perform using pawn as
whites-last-move-picce.

- 37 -

VIl. RAND-ABEL STATEMENTS

Statements are used in RAND-ABEL to define the operation of a
function. (Several statements can also occur at the "top level" in
RAND-ABEL outside of a function definition to set the global context in
which other statements will operate: namely, declarations, the Data
Dictionary (secec Sac. IX), and the Trace and Untrace statements.

The various forms of RAND-ABEL statcements are described bolow
within the follewing catogories:

Assignment

Conditional Execcution
Repetitive Exccution

Table Statement

Functions: Invoking and Exiting
Input/Output

Compound and Null Statements

All RAND-ABEL statements begin with a kayword that uniquely
identifies the statement type. In general all RAND-ABEL statements ond
with a perjod; the only exceptions are compound, conditional, and
repetitive statements whose form has an embedded statement as the last
entity within the form; in those cases, the pericd cnding the cmbedded

staterent becomes the statement delimiter.

ASSIGNMENT

Assignment statements are used to store a value into the location

specified by either a variable or an array clement.

FoSLaLONENL === === m=meecmsedccncccesomacssssnsanscesessosasmcnaaaan +

Let Ivalue be aexpression.
Let pointor be expression.

Increase Jvalue by expression.
Decrease lIvalua by exprossion. |
Multiply lvalue by exprossion.
Divide lvalue by express.ion.

e e e s s e e s Gt s

Rule: The (data) types of tho terms on the "lofthand side" and
"righthand side" of the assignment statement must match.

Two oxceptions:

1. If a real number is required by the lefthand side, then if the
value of the exprassion is integer that integer Is cocrced into
a real for the purpose of this stanement.

2 The xighthand side can be an onumerated identifier constant of
ambiguous data type if that ambiguity is resolved by the type

of the Ivalue or pointer on the lefthand side. For examplo,
the "Blue" in

Let color be Blue.

could be "mood" except that the type associated with 'colox"
unambiguously identifies the type of Blue as a member of the
cnumerated data type "Type-color".

The texms Ivalue and expression are defined in Scc. IV. In
general, an lvalue is what can normally occur on the lefthand side of an
assignment statement: namely, a texm giving the address of a named
storege location, not a pure value.

-39-
Examples:

Let gross-profit be gross-sales - cost-of-sales.

Let force-ratio be Report from force-calc
using Fronce as side-1 and Yugoslavia as side-2.

Decrease forca-ratio by 2.5 .

CONDITIONAL EXECUTION
Conditional execution is controlled by the |f statement. It allows
cortain RAND-ABEL statements to be oxocuted only if certain conditions

ara trun, or are falso.

BT Tl T ie bt Rt bbb debe bbb teieba bbbk
If Boolean-oxpression Then statement

I
I
| |f Boolean-expression Then statement Else scatemont
l

Rules:

1. The Boolean-axpression is any expression that evaluates to type
Boolecan (i.c., that takes on values Yes and No).

2. If the Boolean-expression evaluates to Yes, then the first
statement is cxecuted.

3. If the Boolean-aexpression evaluates to No and the Else clause
is present, the stacement following the Else keyword is
executed. If the Boolean-expression is No and no Else clause
is present, no action is taken.

4. As is normal programming language practice, if conditional
statements are nested, an Else clause is attached to the
nearest previous If clause that does not yet have an Else
clause attached. (If one nceds a null If or Else clause to keep
the logic straight, use the RAND-ABEL null statement,
consisting of just a period, as in:

If king-unchecked Then. Else Perform Think.
or
If king-in-check Then Perform Think. Else.

- 40 -

This statement is not delimited by a poriod for reasons given at
the boginning of this section: the last statement embedded within the If
statement will contain its own dolimiter.

Either scatemont can of course bo a compound statement (that is,
one or more declarations and statements contained within "(" and ")"

braces) thareby allowing any nceded ¢ pploxity in logic to be stated in
the Then or Else clauses.

Exampla:

If usor-rosponse is "Y" or user-rasponse is "ilS8"
Then
(Perform Racalculation.
Print "Caleulation Comploted. Mora? (Y/N): "
Let user-rosponsa be Report from query-user.

Else If usor-responsa is "N" or user-vesponse is "NO"
Then
{ Print “No actjon vaken. More? (Y/N): "
: Let usor-response be Report from query-user.
Else If usor-response is
Then Perform Help-function.
Else
{ Print "Your response not understood."
Perform Help-function.
)

gl
?

Note that If . . . Then rules can also be formed using the table

statement.,

REPETITIVE EXECUTION

The RAND-ABEL For and While statements allew one or more statements
to bn executed repetitively--that is, zero or more times, depending on
the controlling variable or expression.

- 4] -

t-statement-=-==--mmmemecescnccececcsccnscmnesenee—— Tememmene=ee- +

For variable : statemant

|
l |
| l
| While doolean-expression : statement |
| |
+

fn the first form, the varfable must be of cnumerated data
type. The statement is executed once for cach idantifior
constant in the range of tho varfable, with the variable bound
in turn to cach identifior constant, in the order in which the
identifioxr constants are declared as baing tho range of the
cnumerated data type.

Examples:

Define Enumeration Type-alliance: France, Germany, Spain.
Declare alljance-membors:
Let alliance-membors be Type-alliance.

For alliance-mrmbers Perform Force-cale.

For cach-country (US or UK or FRG or Belgium):
{
Let Memborship of ecach-country be Nato.
Let Side of cach-country be Bluae.

Note that the use of the or «oyword here limits the cxecution
of this for statement to oniy the listed identifier constants
within the enumerated data type "cach-councxy". All other
elements of that data type are excluded by use of the or
construct.

In the While form, the Boolcan-expression is evaluated; if its
value is Yes, then the statement is executed; if the value is
No, no further actjon is taken. If the statement executes,
the Beolean-expression is then re-cvaluated, and if Yes the
statement is re-oxecuted. This sequence continues until the
value of the Boolean-expression hacomas No,

- 42 -

Example:
Let k be 3.
While k>0: (

Print resultsfile k.
Decrease k by 1.

)

leads to the following recovds sent to the resultsfile:
3
2
i

The follewing two RAND-ABEL statements ars used within a repetitive
execution to change the flow of the program's logie:

t=Statenenl==r===a==v Ll b b i bl b Lt bl +

|
| Continue. |
| |
| Break. |
| I
T T L L L LT +

Rules:

1. Within a repecitive execution, the Continue statement acts as
complation of the current rxepetition, and contxol passes to the
next repecition of thoe loop, if any.

2. The Break statement acts as complotion of all repetitions of
the loop, and control passes to the statement following the
repatitive statement.

3. In both cases, control rxeturns to the most immediately
inciusive Table, For, or While statement. That is, to the
innermost repetitive statement if they are nested.

Examples:

Let k be 3.
While k>0:

If k=1 Then Break.
Else {Print resultsfile k. Decrease k by 1.}

- 43 -

leads to the sequence of rocoxds in resultsfile:

o w

Let k be 3.
While k>0:
(

It k=2 Then Continue.
Else (Print resulesfile k. Decrease k by 1.)

leads to one printed record in resultsfile:
3

followed by an infinite leop, with k=2 and the While statement
ropetitivaly executing with no effaects.

Repotitive execution can also be achieved by the RAND-ABEL table
statemont. This special RAND-ABEL statement is described in the
following saction.

TABLE STATEMENT

Tha Table statcement is the most powarful statement in RAND-ABEL.
It can bo used to call a function repeatedly, with difforent arguments,
or 1y a dacision table. It is an cxample of a statement with a two-
dimensional sy.tax; the spatial layout of the table-header is Important
in dotermining the meaning of the table statement.

+-5tatonONL ======s=-cmmcemmemmosecmseces s s ssesesssessrss e s oos +
Table func-name

Table coapound-scateaent
Decision Table

table-body.

e o e o i e s e e i

|
|
|
|
| tarle-header.
|
|
i
+

--

- 44 -

Function Table

Basically, the table statement allows the named function or the
cozpound-statement to be execuced once for cach row of data in the table-
baxly. 1f tho table statement contains o named function, then the
columns of data within the table-body are matched up with the function's
formal parametors by means of the column hoadings within the table-
header; if tho tabla statement contains a compound-statemeat, then the
local variables declared wicthin the highest lovel block of that compound
statement are moteched with the columns of data within the cable-body by
means of the column headings wicthin the table-heador.

Tho concept and power of the table statement is best illustrated by
example. The follwwing RAND-ABEL table uses the function "Deploy". It
is similar tvo the deployment table shown in Sec. I of this manual buc,
here, s oxpandrd to seven columns.

Table Deploy
[This table iniciates the deployment of assigned forces to the
Central European theater)

qey #=% unit-type unit-owner asgigned-to
in-area to-area
100 ~ Troops Denmark CEux
All CEur-1
100 % Trooups Netherlands CEux
All CEux-2
25 % Troops FRG CEur
All CEur-3
100 ~ Troops UR CEur
All CEux-4
100 % Troops Belgium CEur
All CEur-5

This tablec statement causes the function Deploy to be called five
times, once for cach row of the table-body. (Each row has seven
entries, the last two being "folded over" so that they appear underneath

the columns labeled "unit-owner" and "assigned-to".)

-[.5 -

Decision Table

Another important use of a teblo statoement is as a decision table.
It {s required by the syntex of the table statement that slash (/) be
used within the table header of a docision table to separate the
conditions from theo action to bo taken. For oxample, consider tho
following decision table (a macro table) used as the "Then'" clause of a
conditional statemont:

If Current-situation is Eur-demo-tac-nuc

(“"Eur-demo-tac-nuc" represents the situation that one or both
superpowers have used some tactical nuclear weaspons in Europe,
but have done so primarily for domonstrative purposes--i.e.,
to coerce the opponent into terminating]

Then
{

Table
{
Declare Basic-statusfi: Let Basic-statusff be Basic-status.
Declare Risks#: Let Risksg# be Risks.
Declare Escalation-guidanceff: Let Escalation-guidenceff
be Escalation-guidancae.

If (Basic-status#} is Basic-status or
Basic-statusff is Unspecified) and
(Risks# is Risks or Risks{f is Unspecified)

Then
{
Let Escalation-guldance be Escalation-guidanceif.
Break.
}
)
Escalatjion-
Basic-status{} Risks## / guidancef
et o p———t et /]
goals-met .- Eur-term
progress-good low Eur-demo-tac-nuc
progress-marginal low Eur-gen-tac-nuc
progress-good marginal Eur-demo-tac-nuc

progress-marginal marginal Eur-gen-tac-nuc

Note the use of the Break. statement within the compound statement

- 46 -

defining the operation of the Table statement, in order to stop the

itoration through the table rows as soon as a satisfactory condition is

found.

Using the Decision Table construct, the macro table above reduces
to the succinet:

Decision Table

Escalation-
Basic-status Risks / guidanco
goals-met -- Eur-torm
progress-good low Eur-demo-tac-nuc
progress-marginal low Eur-gen~tac-nue
progress-good marginal Eur-demo-tac-nuc

progress-marginal marginal Eurx-gen-tac-nuc

The rules for constructing a table-header arxe as follows:

1.

A table-header consists of one or more '"text island," cach
reprasenting the name of a parxameter (if a function is namad)
or the name of a local variable (if a compound-statement is

used) or the name of a local ox global variable (in decision
tables).

A "text island" is a two-dimensional grouping of characters
such that cach character of the group is directly adjacent

(either horizontally or vertically--not diagonally) to some
other charactexr in the group.

Spaces are not permitted within an identifier used as a column
header, so indications of ownership in such an identifier
(e.g., "Red's Presumed-opponent") are not permitted.

Newlines are checked for in tables at the end of cach logical
row. There may be extra newlines interspersed (allowing the
multiline-per-row table as shown), but the newline break at the
end of the row must occur. This is quite useful for finding
errors involving table rows with missing or extra items.

In addition to normal "white space" characters (space, tab,
newline) and comments (enclosed in square brackets), the equal
sign (=) is also considered "white space” in determining the
“"text islands" composing a table header.

-[’7-

6. If a "connecctor character" is uscful in rotaining the integrity
of a "text island," the following charactoxs may be used. Thoy
provide the adjacency required by rule ##2 ghove, but are not
themselves considered part of the identifior represonted by the
toxt island:

| ()

(These connector charactexrs also "count” in determining the
ordering of the text islonds; that is, their position as part
of a column heading helps detormine the relative position of
that column heading.)

The fellowing example is a table heador contrived to demonstrate

most of the above rules:

Table Rod-to-3rd-countries

country-
(coopor- Sguropean -==EE==gL - TR
affocted side ation =involvement==involvement=
France White Uncooperative Discngaged Disongagad
GDR Red Combat-basing On-Call Noncombatant

This cxample calls the furction “Red-to-3rd-countries" twice (once
{or cach row of the table)}. The data in the table body are matched to
five function paramevers having the following names: country-affected,
side, cooperxation, curopean-involvement, swa-involvement. Those
function paramaters neced not have been declared or defined in that
ozder.

The use of che vertical bar (|) as a conn2actor character keeping a
"taxt island" together within a tablo-header allows text headings to be
associated with individual columns of a table in a very flexible way.
Consider the following valid RAND-ABEL table statement:

- 48 -

Table Initialize

Country-set {is it a country?, not a region/sea)

|

| Superpowar-set [is it one?)

||

| | Player-status [should the model simulate it?)

Pl Decision

| | | Borders-wP ~-delay

P [1-366]]

|1 { | Assortive-country [always fight if attacked) { days]}

NERE

1 111 | Nuelear-capable Mem Orien Red- Blue- |

Tl ber ta Tempors pres pres |
Ragion 111 1] Leader ship tion ment ehce once |
ERRIITIIDRZIEIZER X 2 X X E Z XRITIEEXTETEASDIET EITD RBEIES XEIRDI T TRRENEERE 2RREX
Afghanistan YNYYNNUSSR == Red Captive Major None
Arabian-Sca NNNNNN-=- - == - -- --
Australia YNYNNNU ANZS Blue Modevats None Token
Austria YNYYNN =- == White Reluctant None None
Bolgium YNYNNNUS NATQ Blue Reliable None TripW

At times, moroc table columns are necded toc describe a situation
than will fit in the width of a single page. To allow wide tables to be
described, the following additional format rules for a table-header
allow a "wrap-around" header to be zreated, in which one or mors
additional rows of "text islands" provide the needed continuation.

Rules for constructing a multirow table-header:

(1) Table headers may be continued onto succeeding lines, if all
characters in text islands composing one row of the header are
below all characters composing the previous row of the header.

(2) Within a row of text islands, column headers are read left-

to-right.

(Note that by this set of rules, the table above qualifies as
having only a single row of column headers, since the vertical barxs (])
associating text strings with columns keep the "text islands" defining
cach column header from being separated vertically.) In table
construction, the keyword -- can be used as a synonym for Unspecified,

and ¥* is used to indicate "don't care'.

gk a2 I

- 49 -

Multirow table headers are best understood by oxample. Consider
the following table statement, with six foxmal paramoters:

Table Function-of-6

P I P - - —— . o o
— ———_— ——%

First- Sacond- Third- Fourth-
parameter parametox parameter parameter
Fifth- Sixth-
parameter parameter
12.5 Green 512 "String 1"
10002 (A + 10)
9.0 Blue 221 "String 2"
9943 (A - 24)

Note that a blank line has been used to clearly separate the first
and sccond rows of the table header; this is not strictly necessary,
but aids in keeping the text islands seporate. Note also that the
entries in the table body "wrap around" in the same manner. In fact,
the entries are merely raad linea-at-a-time and matched to the
corresponding headers in the table headexr. Although they have been
staggerad so that they may be placed beneath their corresponding header,
this is again not strictly necessary; it simply aids in human
comprehension of the table.

The rules for a table-bedy arxe simple: A table-body consists of a
sequence of entries, each of which is a unitparam. (See the section
Values and Expressions for the forxmal definition of a unitparam. It is
eusentially a primitive value or a parenthesized cxpression.) The
following additional ruie holds for a table-bedy:

RKules:

1. If the table-header describes n formal parameters orx variable-
names, then the number of entries in the table body must be a
multiple of n. (Normally the entries are placed in columns
beneath the column headers within the table-header, so that
each row of the table naturally consists of n entries, except
when wide rows "spill over" onto the next line as in the
example above.)

- 50 -

2. Each entry must match in type with the corresponding formal
parameter or local variable. For oxample, "Saocond-parametor"
is an ocnumerated data type of type Type-color.

The table-hecader oand cable-body axe cach followad by a peried (.)
as delimicer.

The RAND-ABEL Translator that interprets a table marxaely counts n
entries in the table body, thon eithoer calls the named function or
exocutes the compound-statement, thon acquires the next n entries (until
a "." is cncountered instead). Thore is no meaning attached to the
grouping of table ontries into rows.

FUNCTIONS: INVOKING AND EXITING

Tha declaration of functions was covared in Sec. V (Declarations).
Section VI is devoted to the definition of functions and prescnted the
syntax for a function-invocation. Functions returning a value are
invoked by the expression Report from function-invocation. Functions
not returning a value (presumably cxccuted for their side-effects) arc
invoked by a Perform statement, discussed here as part of a description
of all RAND-ABEL statements. We also present hexe the Exit statement
that allows completion of a function's exccution, whether or not it
returns a value.

R o o LT R e e e b bbbl +

| Perform function-invocation. |

Rule: This statement is used to execute a function that does not
return a value. (That is, it is executed for the side-cffects

it causes.)
In some programming languages, a function not returning a value is
called a subroutine. In RAND-ABEL, all program logic is contained in
functions; a function not returning a value is equivalent to a

subroutine.

-8 -

Example:

Perform force-ratio-calc
using France as side-1,
Yugoslavia as side-2,
and 3.5 E 4 as multiplier.

Wicthin tho statements defining a function, the following statement

is used to return program control to tho place from which the function
was invoked:

Rt 1 T L0 T e e e b L L e L L R L et it et bkl

+
|
| Exit. |
| Exit Reporting simpla-oxpr. |
| |

+

Rules:

1. If the Reporting clause is omitted, then the function does not
return a value.

2. If the Reporting clause is used, then the function always
returns a value of the samo data type as the simple-cxpr.

3. If there is more than one Exit Reporting statement within the
definition of a function, then cach of thosc statements must
contain an expraossion of the same data type. However, the
simple-expr may be of ambjiguous data type if that ambiguity is
resolved by the function's declaration.

If a function does not return a value, it is always invoked by the
RAND-ABEL statement:

Perform function-invocation.

If a function returns a value, then it is always invoked using the

expression:

Report from function-invocation

- 52 -

Even functions reporting a value may have side-cffects and in that sense
are not cquivalent te a mathematical funetion. If a function is
declared as returnivg a value, thea it must return a valuc using the
Reporting clause. If it is not declared as roturning any value, it
must veturn using Exit.

Examples:

Exit.

Exit Reporting "Success."

Exit Reporting ((multiplior ¥ force-ratio)/2.0).
INPUT/OUTPUT

Print, Log Statements

The following I/0 statements are used to communicate with the
"outside world"--that is, the computer system cnvironment within whiech
RAND-ABEL is running.

Before the formal syntax deseription, some general texms should be
understood by the reader. RAND-ABEL operates within a C language
environment, within tha UNIX operating system. The general
characteristics of € and UNIX are assumed. The UNIN system has che
(very powerful) coneepts of "standard input' (which is often a
terminal's keyboard) and "standard outmut" (which is oftenm a terminal's
display screen). Input and output consist of & stream of characters,
which is usually directed to the standaxd input and output ports.
However, these data streams can be redirected, for instance into a file,
or into the output or input streams of another procass running in the
computer.

As data are emitted from a RAND-ABEL program, it is either
formatted (according to its data type) in a standard (i.e., default)
manner, or else the programmer can exercise some control over the format
in which it appears. A special language of format codes, consisting of
a string of characters, is used to specify formatting of I/0. The
default formatting for each of RAND-ABEL's data types, and the special

format codes, are described within this section.

- 53 -

-{--Scact?senc-.-------------------- -------- D N N L L
|

Print unitparan . . . unitparaa.

Print with format-spec unitparaa . . . unitparaa.

Print streaanaze unitparaa . . . unitparaa.
Print screasnaze with foresat-spec undtparaz . . . unitparaa.

Log unitparss . . . unitparan.]
Log with formac-spec unitparan . . . unitparas,
Log streamnasie unitparam unitparaa. |
Log streaznzze with forrat-spee unicparaa . . . nitparas. !
|
R e e Emeee-.--- DY T LT Y YR N AN esTsEBEsEEeSenaee ---------+
Kules:

1. The Log statement causes a stream of data (defined by the
sequence of unitparass within the statement to be sent to tha
output stream.

2. The Print statement causes a stxeam of data (defined by the

sequence of unitparams within the statement) to be sent to an
output stream.

3. The defoult output stream is the UNIX stdouc; if a streamnaro
is given, output from Print or Log is directed to that output
stream instead.?

4. If the optional with format-sprc clause is omitted, all output
is formatted according to standard defaults determined by the
data types of cthe unitparams being output.

5. If the with format-spec clause is included, the format-spec is
a RAND-ABEL expression of type string. The character string is
interpreted as a specification for formatting of output, and
output is formatted according to its specifications.

6. A value of type pointer can be output as a hexadecimal number
for debugging purposes, but this is not expected to be used in
a production program.

11f the RAND-ABEL program is executing in the context of the RSAC
system, output should not be sent to the default stdout, as this will
conflict with system CRT screen management.

- 54 -

The dofinicion of a vnitparan is contained in the subsaction Values
and Exprossions within Sec. IV. Basically, it is a simple valuc or a
parcnthesized RAND-ABEL expression.

Dofaulr output forxmats are used for each data type when no control
is provided by an cxplicit formact-spec. These dofault output formats
are described in the follawing subsection.

Examples of the Print and Log statements axe given at the end of
this subscction, afroer the various {ormatting options arc presented.

Default Output Formats

If no spocial formar controls arxe given, cach data type has a
stendard way in which its wvalue is printed. These default cutput
formats arc given by tho following table.

Data Type Default Output Format

Integer A string of digits, with an optional
prefix minus sign. No decimal point,
Delimited by one blank on cach side.

Real A string of digits with an embedded
decimal point. At least onec digit
is printed before ond after the decimal
point, cven if it is a zerxo. Optional
prefix minus sign. Numbexs less than
one-millionth (1 E -6) are considered
a zero. Otherwise, for numbers less than
one, ecnough decimal places are printed to
show at least two digits of significance.
Delimited by one blank on ecach side.

String The string is printed literally, with
no surrounding quotation marks, and
not delimited by blanks.

Boolean The string "Yes" or "No" is printed,
without surrounding quotation marks.
Delimited by one blank on each side.

Pointer A pointer-type value is output as a
hexadecimal number for debugging purposes,

-~ 89 -

using the same conventions as the
intoger data typo.

Enumarated The identifior constant is printed
without surrounding quotation marks.
Delimited by one blank on cach side.

Format Specification

A formac-spec is used to control tha formuatting of output. It is a
sequance of characters that arc printed as listed, except when the
special characters "%" and "\" are cncountored. The % is follewed by a

special formatcing code. The formatting codes rocognized by RAND-ABEL
arc as follows:

%L Enumcrated data tyne

%s String

%b Boolean (Yes or No)

%d Integer without a decimal point

% Recal (or floating point) scientific notation

%f Real (or floating point) fixed decimal point

%8 Real (ox floating point) gencral; uses scientific notation
or fixed decimal point, whichaver is shortest.

A literal percent sign is entercd in a format string as %%.

A number may be placed between the percent sign and the letter.
That number specifies the overall number of characters allocated to the
value. If a number is used, the field will be blank padded, unless the
ficld widch number begins with & leading zero, in which case the ficld
will be zero padded. The field width number can optionally be followed
by a decimal point, and then another number. The second number will be
the number of digits to appear after the decimal point for Re, %f, or %g
formats.

There are other special options that can be used in these format
strings. They obey the conventions of “"printf£(3)" in Section 3 of the
UNIX Programmer's Manual, Bell Laboratories. That document should be

consulted for more detailed information.

-56-

The backslash (\) is followed by a character or sequence of 3 octal
digits that represent special charactoers:

\n Newlinae (line feod)

\r Carriage return

\t Hoxizontal tab

\b Backspace

\ £ Formfced

\\ Backslash

\' Single quota

\ddd Any bit pattern (exactly 3 digits in octal notation)

These special escape sequences allow any ASCII charaeter to be
produced. For exsmple, "\n" allows more than one line of text to be put
in the some string, and "\f" causes a page oject. By using a 3-digit
octal (i.e., base 8 number system) coda, any ASCII character can be
produced; o.g., onc could make the CRT texminal "bell" ring by the
following statement:

Print "\007".

Streams

A stroam {s a pathway through which information is transferred from
a program to a terminal, file, or other program. The information is
transferxed as a stream of characters.

The normal output stream for Log and Print statements is the UNIX

“standard outpuc,”

which is initially set to the user's terminal.

If a screamname has been used in a Log or Print statement, but
that stream has not yet been opened, then a runtime error will be
generated.

The three predeclered and preopened streams are: 'Input",
"Output", and "Error".? "Input" is the strecam of characters roceived
from the usex's terminal keyboard. Reading a character from Input

causes UNIX to wait for the user to type in a line of input text.

2It will nelp the C programmer to know that these correspond
directly to C's stdin, stdout, and stderr.

- 57 -

"Output" corxesponds to the user's terxminal scrsen. Printing a line on
tha stream "Output" causes tha line to appesr on the user's terminal.
"Exrrox" is also directed to the user's torxminal. It is defined
separately from "Output" since the program may wont to redefine one of
these to go somewhere clso.

RAND-ABEL supports three predefined, stream-oriented functions.
They are:

Function Name Argument 1 Argument 2 Return Value

Open-scream {ile-naze mode streannane
Closo-stream streasnaze (none)
Flush-straam streazna=e {none)

In the above function calls, filo-naze is a string argument that is
cithexr a UNIX filc namo or elsc a full UNIX pathname (i.e., giving
directory, subdirectory, octc.). Hode is onec of the strings: “read",
"write", "append”. The value returned from the Open-stream function
should be assigned to an intager varjiable that storces the ID of the
stream. This same variable i{s then wsed as an argument to the
Closc-stream and Flush-stream functions.

The Open-stream function associates a UNIX file or path, in read,
write, or append mode, with a screamnese. If & file is opened in write
mode and the file does not exist, it is created. If cthe file does
exist, it is deleted first. If a file is opened in append mode, all
writing to thut file is appended to the end of the existing file, if
any.

The Close-stream function closes a stream, making it unavailable
for further use (until reopened). It is standarxd practice to close
streams when they will no longer be used by the program.

The Flush-stream function is useful primarily for debugging
purposes. Typically, when a RAND-ABEL program exccutes a Log or Print
statement, the only effect is %o fill that file's buffer in the

operating system. Later, the operating system will perform the actual

- 58 -

write tu the file on disk. This buffering of output provides
significant porformance advantages. This buffer will be written to the
appropriate £ile when a RAND-ABEL program stops execution in the roxmal
mannav. lHowaver, it is possible for a RAND-ABEL program that has an
exrror to abnormally exit without first writing the buffer to disk. This
can causc the programmer to think that his RAND-ABEL program terminated
at a point much earlier than is actually the case. To get axound this
problem, the Flush-stream function can be called to write the contents
of the buffer to disk. Because continued use of this function can
degrade system poxformance, it is used primarily for debugging purposcs.

Since "Input", "Output", and "Errox" are already predeclared by the
system, thoy con be used to declare other stream variables. For
oxample:

Declare Qutput-file by example: Let Output-file be Output.

Examples of Input/Output Statements and Functions
The following cxamples illustrate many of the possible uses of the
various input/output statements and functions described in this section.

{ Declare Message-file to be a streamname)
Declare Massage-file by example: Let Message-file be Outpuc.

{ Usc the Open-stream function to associate a UNIX file with this
streamname, and set its mode to write-only)

Let Message-file be Report from Open-stxeam
using "~anderson/ABEL/programs/messages"” for file-name,
and "write" for mode.

[Pexform a set of writes to that file]

Print Message~file with "Threat level is now: %5d in country: %i\n"
threat (Report from select-country
using Country-list as options).
Print Message-file with "Force ratio is $3.1f at time %d \n"
ratio game-time.
Print Message-file "End of game reached. \n\n"

[Close file }

Perform Close-stream using Message-file as streamname.

- 59 -

COMPOUND AND NULL STATEMENTS

A compound statement is a secquence of zoro or more declarations
followad by a sequence of zoro or more RAND-ABEL statements, all
delimited by braces. It can occur whorever a statement can. It allows
mora complex program logic to be described than is allowed by the basic
sot of RAND-ABEL statemonts:

Lt L TR R e R L b e e L e L L e LR L LT ne=f

| (declaration . . . declaration
|
I
|

I
l
I
statemant . . . statement) |
I
+

Rules:

1. All declarations occurring within a compound statement arc

local to that statement; they have no effoct outside that
statement.

2. Each declaration is processed in turn, then cach statemont is
executed in turn. To obtain more control flow options,
conditional and repetitive execcution statements can be used, os
well as function invocations.

Notice that a functfon-daefinition is not allowed within a compound
statement. All function definitions are at the "top level" of a
RANR-ABEL program.

The compound statement is not terminated by a period, since a
period occurs as a delimiter to the last statement within its body.

If the compound statement requires more than one line of program
text, it is traditional to line up the braces vertically, for ease in
visuvalizing the matches between balancing braces. This positioning is
for human consumption only; it is not used by the RAND-ABEL Translator.

- 60 -

Example: The following set of nested conditional statemonts uses
compound statements to denote the sot of RAND-ABEL
statements to bo exccuted at various places within the
conditional logic. This oxample is ropoated from
carlier in this manual.

If usor-response = "Y" or user-response = ''YES"
Then
{ Perform Recalculation.
Print "Calculation Comploted. More? (Y/N): "
Let usor-response be Report from quory-user.

Else If user-rosponse = "N" or usex-resporse = "NOV
Then
{ Print "No action takan. More? (Y/N): "
Let usex-response be Report from query-usar.

Else If user-response = "7"
Then Perform Help-function.
Else
{ Print "Your response not understood."
Perform Help-function.
)

A nul]l statement consists of a period, the normal terminating
delimiter on a RAND-ABEL statement, only. It is useful within
conditional statements to control logic flow. Empty curly braces are

also a null statement.

+-statengnl========csscmcemnmmccmcccccccemmas s sc st e et s e
I
|
| 0
I
Rule: This statement cavses no effect.

Note that a side benefit of this statement is that extraneous
periods used in error as statement delimiters (for example, after a

conditional statement) do not cause & syntax error and have no effect.

- 61 -

Example: The following cxample, repoated from carlier in this
monual, illustrates the use of the null statement to control
logic flow within a conditional statement.

If king-unchacked Then. Else Perform Think.

- 62 -

VII. META-STATEMENTS

The following speccial statements can be used to influence how
RAND-ABEL programs are written and interpreted,

H#DEFINE

The #define statement provides an ability to create a macro giving
a synnnym or alias for a string of characters to be substituted whexever
that macro identifiexr appears:

+-mota-statemant === ==-eemssesecacsesesccedccnmnecesoscccnnoseonano- +

| #define name [unquoted-string }. |

Rules:

1. The name may be any RAND-ABEL Jdentifier.

2. VWherever that identifier appears, it is replaced by the
unquoted-string scquence of characters BEFORE THE RAND-ABEL
TRANSLATOR INTERPRETS THE RESULTING STATEMENT.

3. After replacement, the RAND-ABEL Translator continues its scan
at the beginning of the replacement string, so any #define
identifiers it contains will similarly be replaced. #define
statements may be nested to any level.

This form of "macro string substitution" can be used to change the
surface appearance of RAND-ABEL programs. It should be used cautiously,
since the resulting programs might well become less readable to persons
who know the RAND-ABEL language.

- 63 -

Exampla:
#define c-dacl
{ Declare country:
Let country be France.
].
INCLUDE
+emata-StatomENt ==~ =m===seeesmesenscseesssescesceossessscsmseeoae +
|
| Include "“filename". |
l I
T L LT PR +
Rules

1. The contents of the file whose name (ox pathname) is given are
inserted at this point in the RAND-ABEL (oxr C) program. The
file name ox pathname is intcrpreted relative to the UNIX
directory containing the current souxce file.

2. After the text inserxtion tokes place, the interpretation of the
resulting file begins at the start of the newly inserted text
lines, so if they contain Include statements, those statements
are executed as they are encountered. Include files can be
nested up to eight levels deoep.

An Include statement is often used to incorporate a standaxd set of
declarations or definitions into a RAND-ABEL program.

Example:

Include "libraries/red-agent/dictionary.D".

- 64 -

DEBUGGING: TRACE AND UNTRACE
FoSlatonOnt — == m e mm s e e e s e e essmsessessseeee s s o — e

Trace If.
Trace Function.

Untrace If.
Untrace Function.

A p—

1. Trace turns on reporting for aither If statements or function
invocations; Untrace turns off reporting.

2. All ctrace data are appended to a special £ile named "debug.out"
within the curront UNIX dircctory.

Funcrion trace data consists of rcadable statements upon cntrance
to a function stating thae function's name and the values assigned to
cach of its formal parametexs. If the function returns a value, that
value is reported to the file upon exit from the function.

"If" trace data writes to the same "debug.out" file. Each
execution of a conditional statement, when Trace If is on, causes the
conditional statement itself to be written to the file, along with an
indication of whethexr the Boolean-exprossion evaluated to Yes or No.

Trace and Untrace are not executable statements. Rather, there
arc commands to the RAND-ABEL Translator to embed tracing information
within the generated C program. Trace and Untrace statements can be
nested; an Untrace turns off the corresponding nearest Trace of the
same type.

Tracing can significantly reduce the speed of RAND-ABEL program
execution and tends to generate large amounts of output. It should
therefore be used selectively and only during program development.

Currently, the Interpreter allows two additional forms of tracing,
namely Trace Decision Table and Trace Let.

- 65 -

IX. DATA DICTIONARY

The Data Dictionary facility in RAND-ABEL permits Jarge, complex
systoms to be doveloped from scparate modules that ars created
individually by different programmers. It is a much more claborate and
uscful facility than the old concept of a "common" area in programs that
ste, 0s data uscd in common by thoe differcnt programs.

Thoe RAND-ABEL Data Dictionary describes the contonts and atctributes
of a data sot to bo used in common by all the RAND-ABEL modules
constituting a system.® This common data sot contains the specification
of:

* A list of items (variables, atcributes, tables, etc.) to ba
included in the common data sot

« A list of items, similar to thao list above but including sub-
procedures and functions, which are not part of the common data
sot

* A structuring of the source files that make up the system

* Access rostrictions, ownarship, method of implementaticn, and
other such attributes for data items and source code

* Ancillary information, such as the author, module name, and
other administrative attributes associated with data items and
source codc

The Data Dictionary consists of a set of files that are maintained
in an cxtended RAND-ABEL language. The RAND-ABEL processor translates
these files into C language data structures. The resulting C code can
be used by a system monitor (a special program providing the foundation
for the system being developed) for allocating memory for the data items
described and also by a front-end data editor that can be used for

display and manipulation of these items.

In the RAND Strategy Assessment System (RSAS), this common data
set is called the World Situation Data Set (WSDS).

- 66 -

A Data Dictionary cntry begins with a Declare statomont. (See the
carlicr section of this manual on Declarations.) After this declaration
of an item are a number of statements describing the iftem. The sequence
of descriptions is ended when a new Declare is found for tha next item,
a now Default statement is xeached, ox the End Declarations statement is
cncountered.

Many attrxibutes that can bo associated with a data item will be the
same for an entire group of items (o.g., author, access restrictions,
otc). To avoid the need for typing a whole list of attributes for cach
icem, "default" attributes may be declared. When a default is doclarad,
it affects all subsequently declaxed data items within the current file
and any f£iles "Included" within that file. A default does NOT affect
any files that have "Included" the file that contains it. This nested-
default mochanism allows highex-lovel files to croate default
environments for lower-level files without worry of a default in a lower-
loval file causing side-cffects.

The set of Data Dictionary declarations has the following syntax:

End Declarations.

+-data dictionary spacification block===========mmmcncccmecncannae. +
| I
| Begin Declarations. |
| (No} Default DbDdeclaration ... |
I |
| daclaration |
| |
| DDdeclaration . . . |
| |
| DDdeclarat ion |
| |
| declaration |
I l
| DDdeclaration . . . |
I I
| DDdeclaration |
I I
l I
| I
I I
I |
4

- 67 -

The individual data dictionary declarations (i.c., DDdeclarations) arxe
of three types:

1. Dafining declarations. Information that actually affects cthe
object code, such as type, size, or access data.

2. Identifying cdeclarations. Information that is documentary but
mandatory.

3. Informative declarations. Information that is optional but
uscful as documontation.

Lach of thesc categories of declarations is described bolew.

DEFINING DECLARATIONS

These declarations arce mandatory for cach external data item but
may be handled by default declarations that are in offect. (See Creoating
and Removing Dofault Declarations balow.)

+-DDdeclarat fon=-======v===---mcmmmcccaccccmccceeenccenncaeccanann.
Method: Direct.

Method: Function.

Method: Macro.

Function: func-name.

Macro: string-literal.

B R

--

Rule: Method means "method of access." An item's access method
tells whether the variable is accessed directly or via a
function or macro. If an item is accessed via a macro, the
macro must be defined using a Macro statement. If it is
accessed via a function, the name of the function must be
given using the Function statement. The Macro or Function
statement must immediately follow the Method declaration.

Examples:

- 68 -

Method Function.
Function: calculate-attrition.

where "calculate-attrition" must be a function that returns a value.

Method Macro.
Macro: (("GOVERN_entry) (char *)F + 2) - F->governs + 1 .

+-DDdeclaratfon=======s=messcemmeeecccmmocnoncsesssmesmnesemnoscenas

Rule:

Use:
Usa:
Use:

+
|
Clone. |
No Clone. |
Constant. |

|

+

The Use declaration indicates whother an item is to be
created dynamically (Clone) when the Push function is
invoked and discarded when the corresponding Pop function is
axecuted; or whether one instance of the data item is to be
maintained throughout a Push and Pop (No Clone). Data that
arc never changed during program execution arc declared with
the Constant option.

Currently, No Clone is not implemented. Variables declared No

Clone will behave as declared Clone.

Example:

Owner: owner-nare.

|
| Owner: Global.
l

Rule:

Use: Clone.

This declaration allows different modules to have separate
items with the same name. Scurce code also has an owner and
automatically accesses either its own or "global" data
items, unless otherwise specified by this declaration.

-69-

The “owner-name" is onc of a sct of commonly agrced-upon names by
which the various groups developing code are idontified. The keyword
Global is used if there i{s no specific ownor.

Examples:

Owner: Red.

Owner: Global.
+-DDdoclaracion=-=-======c==memmecscomcceseoccnsssscoseesennsonsoa. +
I [
| Read Everyone. |
| Read ownar-name . . . oxaer-name. |
| Read owner-name , . . . , oNner-nagc. |
| Noread Everyone, |
| Noread owner-name . . . ouwner-nazae. |
| Noread owner-name , . . . , owner-naso. |
| Write Everyone. |
| Write ownor-name . . . owner-name. |
| Write owner-name , . . . , owner-name. |
| Nowrite Everyore. |
| Nowrite ovner-name . . . owner-nanme. |
| Nowrite ovner-name , . . . , owngr-nanme. i
I |
i o SR *

Rule: These declarations specify which source code owners (i.e.,
"access groups") can road or write this item. The "No"
prefix can turn off a default or serve documentary purposes
by establishing a lack of access for a particular group.

The special group Everyone applies to all access groups and can be
used to grant or deny access for all groups.

- 70 -

Examples:
Noread Blua, Neutral,
Writea Everyone.

+-DIKleC]aration========smmm===mmxmmo- ammmannn Memeemamanaan semamoond
| |
| Read Format: string-litaral. |
I l
| Write Format: scring-liveral. |
! |
'*J -- ‘-—*

Rule: The proferred format for reading snd writing this data item
is stazed as a quoted string of format deseriptors. (Seo the
subscction Format Spscification within the INPUT/OUTRUT
portion of Sec. VII, RAND-ABEL Statements.)?®

It is desirable to specify output formats for string variables,
integers, and real (floating point) data whaenever possible, sineco iz
helps the display programs format the data in a consistent mannor., It
is unnocessary to specify output formats for enumerated variables since
the fiald width neceded to display them is casily dotarmined by the
display programs.

Examplo:
Write Format: "¥¢5.3f".

*For programmers familiar with the € language: the format
specification is the same as those used for the scanf and printf
functions.

+-Pldeclaratfon===<====o==mcmmcmccsccmacceccmsaeve—n. “emmmsssemmn- +
| |
| Validation Range: nuceral to numeral. |
l s
| Validation Function: (fune-naze. |
| |
femememecmemcacesncmnmasacenamaeen———— e T +
Rule: fn the first form, an inclusive range of numeric values

(either integer or real) is given. In the sccond form, a
Boolean function is named that is expected to roturn Yes
for a valid item, and No othsxwise.

Examples:

Validation Range: 2.7 to §.75 .

Validation Function: Check-valna.
+-Bdeclaration-==-========mecmcccmcmmaccceonmoceoconcnsssnanoccone +
l [
| Prompt Function: func-naze. |
| Prompt String: scring-literal. |
| I
L S +

Rule: In the firxst form, the named function will be called prior
to input for this data {tem. It returns a string that will
be displayad en the usex's CRT scraen. In the second form,
a quoted character string is given for display prior to
input of the dazs stem. In the RSAS environment, the input
of data i{s performed from the Data Editor program.

Examples:

Prompt Function: Show-message.

Prompt String: "Type ratio as a decimal: ".
+-Dhdoclarat fon=========m=memmemmcccmcecccecosaccesccn oo nara e +
I I
| [Initialize. |
l l
| No Initialize. |
I I
T T T L L LN L ET R P PP PR PR +

Rule: This declaration indicates whether the item can be

initialized by the RAND-ABEL Translator or not.

-72 -

At this time, the Initialize declarations may bo used in a program,
but their effect has not been i{mplemented. Conscquently, they do not
alter program behavior.

Examples:
Initialize.
No initialize.

IDENTIFYING DECLARATIONS
These declarations are mendatory but take an arbitrary comment as
an argument. They are used for standardized wucumentation of a module.

-DDdeclaration---===s-===-memmrcccmecacccnreececncan e e et ———

Author: comment.

+ +
| l
| |
| Date: coament. |
| l
| Definition: comment. |
| l
+ +

Rule: The comment may be a frec-format comment enclosed in the
documentation of the program or data item.

Examples:
Author: [Mark LaCasse).
Date: [83/02/05 }.
Dafinitiorsi: [This function returns a
string value that should
be displayed prior to input
of the force zstructure ratio].

INFORMATIVE DECLARATIONS

These denlarations are optional. They provide additional
structured documentation of a RAND-ABEL program module.

~00declaration===========ssemeecccmcancnnnnns. e bbb b ommeah

+
l |
| References: coament. |

i l
| Comments: comment. |
|
| Status: comment. |
|

fmemmmamanecenammccacecaaeaa. emmmemsmsseemnes meememeeeeeeeee———- +

Rule: The comment may be a free-format cowment enclosed in squarze
brackats "[)" that aids in tho documontation of the program
or data icem.

The Status declaration is often usced to represent whethoes a
variable is "proposed" (indicating the author is willing to antertain
proposals for change) or "confirmed" (indicating the author has closed
debate on the subject).

Examples:

References: [Sce R-1258, Section II .

Comments: [This function is a placcholder
until « mor2 complete computation
can be developed].

Status: [Prcposed].

CREATING AND REMOVING DEFAULT DECLARATICONS

As mentioned above, all the mandatory Data Dictionary declarations
s<ed not be given for ecach data item or function. Many of these
declarations can be covered by use of declared defaults.

Any of the Dldeclarations described in this section may be praeceded
by the eyword Default., If that is done, that setting for the
particular DDdeclaratiorn remains in force within the current file (and
files Included within it) until a new default is given cr a No Default
is declared for that type cf DDdeclaration. Any default setting may be
ovarridden by individual DDdeclarations associated with a particular

data item or function.

- 74 -

Examples:

Default Owner: Red-Agent.

Default Method: direct.

Default No Initialize.

Default Author: [Mark LaCasse, randvax!lacasse }.

The following No Default statements may be issued to remove a
default setting on a type of Dldeclaration:

~DDdeclarat fon========s==mcsmcnueccecucmenccannn e can s e n e naa . +

+

l

| No Default Author. |
| No Default Comments. |
| No Default Date. |
| No Default Definition. |
| No Default Initialize. |
| No Default Method. |
| No Default Owner. [
| No Default Prompt Function. |
| No Default Prompt String. |
| No Default Read Format. |
| Mo Default Write Format. |
| No Default References. |
| No Default Status. |
| No Default Use, |
| No Defauit Validation Function. |
| No Default Validation Range. |
l

When No Default is specified for any mandatory DDdeclarations,
such a DDdeclaration must accompany cach data item or function until the
next Default or End Declarations statement is reached.

Examples of No Default statements:

No Default Comments.

No Defauit Prompt String.

No Default Read Format.

No Default Validation Function.

- 75 -

EXAMPLE OF A DATA DICTIONARY DECLARATION SECTION

The following is a complote cxample of a Data Dictionary
declaration soction within a RAND-ABEL program. Such a RAND-ABEL code
scction is often contained in a file cthat can be Included within another
RAND-ABEL file to obtain the standard defaults and definitions required.

[Sample Data Dictionary Entries for Blue Agent January 1984 |

Begin declarations.

Default Owner: Blue.

Default Method: Direct.

Default Read: Blue.

Default Write: Blue.

Default Use: Clone.

Default No Initialize.

Default Author: { Mark LaCasse, randvax!lacasse].
Default Date: [84/01/05 }.

Define Enumeration Type-lookahead-opponent: BR1, BR2,
[BRL is Blue's Red version one)
{ BR2 is Blue's Red version two]
Declare Lookahcad-opponent by example:
Let Lookahcad-opnanent be Type-lookahcad-opponent.
Definition: [Blue's Red, opposes Blue in Lookahcads).

Declare Time-to-wake by example:
Let Time-to-wake be 45786.
Prompt String:
"Enter the date and time in thc format: MMM DD, hh.mm".
Validation Function: Check~time-input.
Definition: [General purpsse, future time to wake Blue .

End Declarations.

- 76 -

X. COPROCESSES

A coprocess is an executing program (a process) that is started by
anothar execcuting program (its parent). The two then execcute
independently and asynchronously of one another This scction discusses
how coprocesses dre creatad, put to sleap, and terminated.

CREATING A COPROCESS

Coprocesses arce crcoted by calling u built-in RANU-ABEL function
called Startup-plan. It takes two arguments, plan-start and plan-name.
Plan-start is given an object representing the top-lavel function of the
to-ba-creoated process. This object can be created by usc of the
function oxpression. Plan-name is a string identifying the now process.
The function Startup-plan roeturns an objoct that is of type process.
Thercfore, the initiation of a new procass might be porformed by a
statemant such as the following:

Declare now-proc: Let new-proc be Self.

Let now-proc be Report from Startup-plan

using (Function Top-of-plan) as plan-start
and “Offensive strategy" as plan-name.

Note the use of the expression (Function Top-of-plan) to create an
object representing the user's function named "Top-of-plan', which is to
be executed as the beginning of the new process.

The execution of the Startup-plan function is the only method by

which a value of type process can be created.

PUTTING A PROCESS TO SLEEP
A process can cause itself to "go to slecp'--that is, to stop
processing until it is awakened by some external program. This is done

by calling a built-in function called "Sleep". Sleep takes no arguments

and returns no value:

Perform Sleep.

- 77 -

There are no facilities within the RAND-ABEL language itsclf for
awakening a function once it is sleoping; at present, those facilities
arc part of tho support environment in which a RAND-ABEL process
roesides and must bo invoked directly within that support cnvironment.

(Sce Appendix A for some furthoxr information on the support cnvironment
for RAND-ABEL.)

TERMINATING A COPROCESS

To terminate a coprocoss, the "Remove-plan" function is used. It
takes onc argument, called process: an objoct of type process that
identifies tho process to be terminated. Therefore, to torminate the

process created by the oxample above, onec would write:

Perform Remove-plan using new-proc as process.

RESERVED COPROCESS VARIABLES3: SELF AND PARENT

The RAND-ABEL system contains two rescrved process-type variables:
Self and Parent. Self is always cqual to the current process. Parent
always rofers to the parent process that spawned a given process. These
variables can also be used in Declare statements as cxamples of

processes, so that new variables of type process can be declared.

RULES FOR THE USE OF COPROCESSES

The following rules govern the use of coprocesses.

1. A coprocess may not call Remove-plan on itself.

2. Processes can be the object of assignment statements, so that
statements such as:

Let me be Self.
are valid.
3. Processes can be values of suitably defined variables or

arrays. This was illustrated in above example, where "me" is a
variable taking on a process as its value.

- 7C -

4. Processes can be arguments of suitably declared arrays. For
oxample:

Declare active_process:
Let active._process be Self.

Declare array: Let array of active.process be 17.

S. Processes cin be paramoters of functions. For cxample, the
built-in furction "Remove-plan" has as its single parameter an
object of tyye proeess.

6. Procosses arc subject to no othaxr operations.

In the RSAS cnvironment, coprocesses coxrospond to decisionmaking
agents or other simulation models. At the top level, a system monitor
controls the oxecution of coprocesscs.

A given agent (coprocess) may create several subordinate
coprocesses to create an organjzational hieraxchy (such as a hierarchy
of command in a military command structurc as demonstrated by RSAS
decision models).

-79-

Xl. TOP-LEVEL RAND-ABEL DECLARATIONS, DEFINITIONS,
AND STATEMENTS

The RAND-ABEL “language" is a complete programming language.
However, only certain of the RAND-ABEL statements and declararions can
occur at the top level of a RAND-ABEL program. All other RAND-ABEL
constructions occur within these %op-level statements and declarations.

The onliy RAND-ABEL declarations and statoments that can occur at
the top level are:

* Any valid RAND-ABEL Declare
¢ Any valid RAND-ABEL Define
* The RAND-ABEL statements:

Trace If,
Trace Function.

Untrace If.
Untrace Function.

* Onec of the two mutually exclusive statements:

Owner: name.
Owner: Global.

* A special top-level-only Declare:

Declare Ignore name . . . name.
Declare Ignore name, . . . , name.

* The set of declarations providing information to
the Data Dictionary facility (see Sec. IX).

Begin Declarations.

declaration

Dhdeclaration . . . DDdeclaration
declaration

DDdeclaration . . . DDdeclaration

End .Décl.arations .

- §0 -

The meanings of all normal RAND-ABEL Declares, Defines, and
scatements are found in carlier scetions of this document. The meaning
of tae ownership statements (Owner) {s found in Scction I¥; when used
here, the statemnents deeclare the ewnership tag to be put on all
subsequent RAND-ABEL code.

Tha Declare lIgnore statement is uscd to add a set of fdentifiers
to a list (initially null) that the RAND-ABEL Translator will ignorxoe
whenover they arce encountered. These identifiers can then be used as
"noise words" in RAND-ABEL statements, prosumably to increase their
readabilicy.

For example, the declaration:
Declare ignore a, an, the.
allows one to write a KAND-ABEL statement such as:
Let the color of a piece be whita.
whirh is equivalent teo tho RAND-ABEL statement uning explicit comments:
Let [the] color of {a] pirce be white.
or, the more brutally simple:

Let color of piece be white.

Care should ba tuken in the declaration and use of such noise
words, since rcaders of RAND-ABEL code might overlook the Declare
Ignore statement and believe that these words are part of valid
RAND-ABEL syntax, possibly leading them to write incorrect RAND-ABEL
programs. Also, it should ba noted that in normal English the phrases
"a picce" and "the picce" mran quate different things, whereas they do
not in a RAND-ABE!L program in which both "a'" and "the" are declared to
be noise words, again creating the possibility of confusion in the
RAND-ABEL reader's mind.

-81-
Appendix A

LOCAL SUPPORT ENVIRONMENT FOR RAND-ABEL

This appendix briefly discusses the use of RAND-ABEL at The RAND
Corporation. Its contents are specific to this site. Currently,
RAND-ABEL is used at RAND only in the context of tha RAND Strategy
Assossment Systam (RSAS). Consequently, the following guidelines are
RSAS-specific.

The RAND-ABEL Translator is generally used in two modes: (1) as an
aid in preparing syntactically correct RAND-ABEL rules, and (2) to
produce compilable C codo for actual incorporation into the executable
RSAC model. The basic diffarence between (1) and (2) is the handling of
the Data Dictionary.

Essentially, in preparing RAND-ABEL programs data items ave
frequently added, changed, or remo'red; as a result, the writer cannot
use the mastar data dictionary, but must use his/her own extract of ft.
This seeming inconvenjience can actually be an aid, as it forces the
writer to be aware of how his/her program integrates with the other
parts of the model.

In all casas the writer incorxporates the Data Dictionary into the
program by the RAND-ABEL Include stavement (described in Sec. VIII).
Since this mechanism allows nesting (that is, included files can contain
other include statements), a two-lovel approach is used. At the top of
a RAND-ABEL program file is an Include for a single Data Dictionary
file; this file in tuxn contains Includes for all needed Data Dictionary
components. In the finished program, the program file instead
incorporates the mastex Data Dictionary file.

All Data Dictionary files end in ".D", while all RAND-ABEL program
files end in ".A", The RAND-ABEL Translator is applied to the ".A"
files only (with the Includes introducing the Data Dictionary). The
result of applying the RAND-ABEL Translator is (possibly) a series of

error messages and two files: a ".A.c" file and a ".A.I" file. These
files are then used to build the integrated RSAS mcdel.
Al) Data Dictionary and RAND-ABEl program files are aventually

xegistored with the RSAC Data Dictionary administrator for the final
integration.

Running the RAND-ABEL Translator itself is quite simple. Applying
it to the file "rules.A" would involve typing (on a Sun workstation®
used by RSAS):

/pl/install/bin/enabel rulas.A

Most paople will probably want to use d4n alias for this and so will
place the line:

alias enabel /pl/install/bin/enabel

into thair ".cshrc" files.

In reviewing the error messages produced by Lhe RAND-ABEL
Translavor, two things should be kept in mind:

(1) The range of legal RAND-ABEL-language inputs is quite large;
sometimes it takes several keywords for the enAbeler to deatect
thar an arror has accurred. Thus, nat anly should rha lina
number and word printed by the RAND-ABEL Translator be checked
for the error, but the code immodiately precceding it as well.

(2) A problem with block-stxucturad languages (1ike RAND-ABEL) in
general, and with top-down parsers like the RAND-ABEL
Translator in particular, is a difficulty in reccvering from
certairn errors. (That is, there is often a problem with finding
the start of legal statements after the error snd in recovering
context skipped over because of the error.) As a result, it is
quite possible for a single error to produce a hundred error
messages. Thus, there are occasions where caly the first error
reported is an actual problem, while subsequent error messages
are a result of declarations, definitions, or statement
boundaries having been missed. Note that this is not always
the case. If a several-line gap appears between errors, there
is a good chance that the later error is valid. However, an

'Sun workstations running Sun operating system Release 3.2 (a
System V/Berkeley UNIX derivative operating system) are supported.

- 83 -

erxor in a declaration can cause spurjous arrors whorever the
item baing declared is subsequently used, even if thousands of
error-frec lines intexvene.

In all casos, the RAND-ABEL program writer has to do a cartain
amount of learning through experionce and through sharing experience
with other writers. Also, therc arc cortainly cases whore the RAND-ABEL
Translator can do a batter job of f(inding and reporxting eorrors, and in
recovaring from them. Communication is thus vexy important.

CHANGING RAND-ABEL RULES (SOURCE CODE)

To make changes to the rules governing program oxccution, the
analyst must odit the rolevant RAND-ABEL source ile (donoted by a ".A"
suffix on tha filenemse). Those changes can ba clhecked for correct
syntax and incorporated into tha RSAS gamu by cither of two mothods.

The first Involvas tho use of the RAND-ABEL Interpretor, while the otherx
compiles the code using the so-called "Enabelex" or RAND-ABEL

Translator. These methods are dascriboed briafly below.

Interpreting Source Code

The fastest way to incorporate new rules into the RSAS gaming
environment is to move the functions containing those rules into a
special Interpreter dircctory called INT under Rsas/Run. Anyuime a ".4"
RAND-ABEL source file is created or modified in that dircctory, tho KSAS
monitor will use that code, instead of the compiled version of the
source codae, when the game is star® ‘d or restarted from the RSAS Control
Pancl.

Some words of caution will help to avoid confusicn and mistakes
when moving RAND-ABEL rules to the INT directory. First, copy the
source files containing the functions of interest to the INT directory.
Then, edit the interpreted files to remove (1) all Include "filename"
statements in the file, and (2) any other functions that have been left
unchanged from their compiled counterparts. Removing unchanged

functions simply reduces the amount of code interpreted and results in

faster cxccution, since compiled code exccutes approximately an order of

- 84 -

magnitude faster than interpretad code. Also, make certain that there
is an Owner: statement at the beginning of the file (Owner: Blue."
for example).

The file ".defines" contains all #Define macro statements identical
to the ones in Rsas/Init/incl.D that are used during compilation. This
fila, along with the Data Dictionary itself, is automatically included
by the Interpreter.

To temporarily prevent intexprative executic- of a source file,
move the source file to the Hide directory that exists under the INT
directory. When it i{s desired to interpret the source file again,
meraly move it back up to tha INT directory.

The following diagram f{llustrates the relationship of source
directories to the interpreted source diractory.

Source and Interpreter Directory Structure

Rsas
/ \
' Sre Run
/ \
NCL Awp Green ... INT
/ \ \
Red Blue Hide

When the Systom Monitor begins or resumes running a game, it will
first check tha INT directory for source files to interpret and invoke
the Interprecer to process these files. If the files are free of syntax
or other errors, the Interpreter will lag a massage in the scrollable
text window under the Control Panel (the game log window) indicating
that the functions in these files will be interpreted, and System
Monjtor will then continue the game. Otherwise, error messages will
appear in the game log window and the games will stop immediately. If

the game is resumed & second time, no further files will be interpreted

funtil the user edits them correcting the arrors), and the game will

continue using the compiled versions of the functions.

- 85 -

Compiling and Loading Source Code
Thore ara two steops involved in producing an execcutable RSAS from
the RAND-ABEL source files. The first step is to "enabol" the source
eode, checking syntax, producing C code and cventually ".o" objact
files. Theo next step is to combine the various ".o" modules into a

singlo exocutable (binary) file called run.sun in Rsas/bin directory.

Incremental Changes to Source Code

Changes to a sourco filo can be incorporated into RSAS runs by
compiling it and loading tho resulting output with the existing compiled
modules. Sce the instructions ebove for determining which configuration
file to touch? in order to compile a sot of .A files.

In order to build a now executable RSAS file, use the makefile in
the top-lavel Rsas directory. By typing "make" in that directory, all
source code will be chocked for modifications (the updated files will ba
recompiled) and loaded into a new "run.new" exccutable .ile in the
Rsas/bin dircctory. Renaming that f£ile to "run.sun" will cause it o be
used in subsequent RSAS runs.

Full Data Dictionary Remake

When changes axe made to Data Dictionaxy declarations (e.g., by
adding a new variable or enumeration type), it is neccessary to remake
all RAND-ABEL souzce files. This can be done by "touching" the
dictionary.D file in Rsas/Init directory and starting the RSAS "make"
from the top-level Rsas directory as shown below (assuming the current
working directory is Rsas):

cd Init
touch dictionarv.D
cd ..

make

2 Touch is a UNIX command.

- 86 -

A "full" Data Dictionary remake will also produce a new World
Situation Data Sot (WSDS) file called "wsds.new" in Rsas/Run/Wsds
diroctory that should be subsequently renamed to "wsds" to use it ia an
RSAS run. In addition, a “scdb.new" file is produced in Rsas/Run that
should be renamed "scdb.S" for using tha Source Code Data Base (also
known as the Cross Reference Tool).

- 87 -

Appendix B

QUICK REFERENCE GUIDE TO THE RAND-ABEL LANGUAGE

KEYWORDS

The following is a list of RAND-ABEL keywords. Woxds that always
occur in sequence as phrases are shown together; words are shown
separately that are optional or are one of several possible choices
within a phrase.

and

are

are not
as
Attribute
Author

Begin Declarations
Break

by

Clone

Comments
Concatenated with
Constant

Continue

Date
Daeclare
Declare...by example
Decrease by
Default
Define
#define
Definition
Divide...by
Divided by

End

End Declarations
Erasable

Erase

Evaluate
Everyone

Exit

For
Format
from
Function

Global

If...Then
if...Then...Else
Ignore

in

Include
Increase...by
Initialize

is

is at least

is at most

is greater than
is less than

is not

Let...be
Log

Macro

Make

Method

minus

modulo
Multiply...by

negative
No
Not

of
or
Owner

Parent
Perform
plus
Pointer to
Print
Prompt

Range

Read
Record
References
Report from
Reporting

Self
Semi-erasable
Status

String

Table
There is
times
Trace

Unerasable
Unspecified
Untrace
Use

using

Validation
Value of

While
with
Write

Yes

In addition, the follcowing special symbols also act as keywords

having special meaning:

S T P
% ~
<= > <

$
& l

In the above lists, ellipses (...) are used to represent intervening

- 89 -

words in a stondard phrase. (Note: Elsewhere in this manual, ellipsecs
are used to ropresent certain syntactic options; sce item 14, below.)

BNF DESCRIPTION OF RAND-ABEL

To describe the RAND-ABLL language in a concisc format for casier
scanning, thke Backus-Naur Form (BNF) of RAND-ABEL is shown baolow. ‘The
following notational conventions arc used in this BNF. Neonterminals in
the language arve denoted by names with a capitalized first letter (e.g.,
Abel), while terminal symbols are all upperxcase (e.g., ENUMERATION).
Note that the nonterminals that represent keywords are shown hore in all
uppercase, whereas in a RAND-ABEL program only the first character may
be capitalized. & fow special symbols, namely

2= | anyname® <empty>

arc paxt of the notation, NOT part of the RAND-ABEL programming

language. Star ''*'' immediately follows any quantity, represented by
''anyname'' above, that can be repeated zero or more times. The ''|'!
separates alternative selections that are valid in the same construct.

<empty> indicates that an option may be omitted entirely.

Abel = Component?
Component ::= Declaration
| Definition
| OWNER : NAME
| OWNER : GLOBAL
| Trace.request IF Opt_file_clause .
| Trace_request FUNCTION Opt_file_clause .
| Trace.request NAME TABLE Opt_file_clause .
| Trace.request LET Opt_file_clause .
| TRACE TO FILE STRING .
| Dictionary
Declaration ::= DECLARE NAME : Assignment .

| DECLARE NAME : Call .
| DEFINE ENUMERATION : Member_list .

Definition
END

Opt._use_clause

- 90 -

| DEFINE ENUMERATION NAME : Member_list .
1:= DEFINE NAME Opt_use_clause : Opt _declarations Statements

1:= <empty> | Paramexpr

Opt.declarations::= Declaration¥

Statements
Statement

Block

Assjgnment

1= Statement

| Block

| Assignment .

| INCREASE Expr BY Expr .
| DECREASE Expr BY Expr .
| MULTIPLY Expr BY Exprx .
| DIVIDE Expr BY Expr .

| Call .

| To_call .

| Conditional Statement

| Conditional Statemant ELSE Statement

| WHILE Expr : Statement

| FOR NAME : Statement

| FOR NAME Expr : Statement

| FOR NAME PREPOSITION Expr : Statement

| FOR NAME NOT PREPOSITION Expr : Statement
| BREAK .

| CONTINUE .

| EXIT .

| EXIT REPORTING Expr .

| Trace_request IF Opt_file_clause .

| Trace_request FUNCTION Opt_file_clause .
| Trace_request NAME TABLE Opt_file_clause .
| Trace.request LET Opt_file_clause .

| TABLE Element . Opt_newlines Rows .

| TABLE Biock . Opt_newlines Rows .

| NAME TABLE . Opt_newlines Rows .

::= { Opt_declarations Statements }

::= LET Expr BE Expr

Call
Io_call

To_primit
Condition
Trace.req
Opt_file.
Expr.list
Row

Rows

Expr
Eval_clau
Logexpr

Logterm

Logfactor

Subexpr

Term

- 91 -

.
I

::= PERFORM Element Opt_use_clausa
::= Jo_primitive Expr_list
| To_primitive WITH Exprx Expr_list
| To_primitive NAME WITH Expr Expr_list
PRINT
| LOG
| EXPLAIN
al IF Expr THEN
uest ::= TRACE
| UNTRACE
clause ::= <cmpty> | TO FFILE STRING
1:= Expr
::= Expr.list NEWLINE Opt_newlines
::= Roww

ive HH

::= Logexpr

| Eval_clause Expr_list
se ::= EVALUATE

| EVALUATE WITH Factor

::= Logtexrm

| Logexpr OR Logterm

::= Logfactor

| Logterm AND Logfactor

::= Subexpr
Logfactor EQUAL Subexpr
Logfactor NOT.EQUAL Subexpr
Logfactor LESS_THAN Subexpr
Logfactor GREATER_THAN Subexpr
Logfactor LESS._OR_EQUAL Subexpr
Logfactor GREATER_OR_EQUAL Subexpr

::= Term

| Subexpr + Term
| Subexpr - Term
| Subexpr DOLLAR Term

Factor

Factor

Domlist

Paramexpr
Paramlist

As_for

Element

- 92 -

Term ™ Factor
Texm / Factor
Term MODULO Factor
Elemoent
Element IS IN Element
REPORT FROM Element
REPORT FROM Element Paramexpr
Element PREPOSITION Domlist
-Element
NOT Element
=FElement
~=Elemont
<Element
»Element
<=Element
=Element
MAX Element
MIN Element
Faector
Factor COMMA AND Domlist
Factor COMMA Domlist

::= USING Expr As_for NAME Paramlist
1= <empty>

COMMA Expr As_for NAME Paramlist
COMMA AND Expr As.for NAME Paramlist

1i= AS

FOR

::= VALUE OF Element

POINTER TO Element
FUNCTION Element

(Expr)

{ NAME SUCH THAT Expr)
{1}

{ Member_list }

- 93 -
STRING
FLOAT
INTEGER
BOOLEAN
UNSPECIFIED
UNIVERSE
NAME
Poss.clausc NANE
NAME
| NAME Member_list
| NAME COMMA Member_list
\
i
)
|

Hombeor.list

POSSESSIVE

| Pass.clausc POSSESSIVE

NEWLINE®

BEGIN DECLARATIONS . Dict._cntries END DECLARATIONS .
Dict_ontry

Poss_clause

n

Opt_newlines

Dictionaxy

Dict_entries
| Diet_entries Dict_entxy
Dict_entry ::= DEFAULT Descriptor
| Declaration Description
| Nodefault_decl
Description ::= Description®

Descriptor ::= Ownership

Access_method
Macro._method
Func_method
Usage
Init_struct
Access..type
Prompt_func
Prompt_string
Val_func
Val_range
Format

Author

Ounership

Access.method

Macro_method

Func_method

Usage

Use..type

Inic_struct

Access..type

Group..list

Group

Pzompt_£unc

Prompt_string

Val_func

1

- 94 -

Date
Informative._def
References
Commonts
Status
OWNER :
OWNER :

NAME .

Poss_clausce NAME .
OWNER : GLOBAL .

OWNER : EVERYONE .

METHOD : DIRECT .

METHOD : MACRO .

METHOD : FUNCTION .

MACRO : STRING .

FUNCTION : NAME .
FUNCTION : Poss_clausc NAME .
USE : Use_type .

CLONE

NOCILONE

CONSTANT

INITIALIZE .

NO INITIALIZE .

READ : Group_list .
NOREAD : Group._list .

WRITE : Group.list .
NOWRITE : Group_list .
EVERYONE

Group

Group_list COMMA Group
NAME

Poss.clausc NAME
PROMPT FUNCTION : NAME .

PROMPT FUNCTION : Poss_clause NAME .

PROMPT STRING : STRING .
VALIDATION FUNCTION : NAME .

Val_range
Number

Format

Authox
Date

References
Comments
Status
Nodafault_decl

Comment

- 95 -

| VALIDATION FUNCTION : Poss_clause NAME .

::= VALIDATION RANGE : Numbex TO Numbex .

::= INTEGER

| FLOAT

::= READ FORMAT : STRING .

| WRITE FORMAT : STRING .
::= AUTHOR : [STRING] .
::= DATE ¢ [STRING | .
Informative.def ::= DEFINITION : [STRING] .
::= REFERENCES : [STRING] .

NO
NO
NO
NO

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

— e am— - o i s m—— pmam e e fam awee e — me— —— 8@

COMMENTS : (STRING) .
STATUS : [STRING J .

DEFAULT METHOD .

DEFAULT USE .

DEFAULT INITIALIZE .
DEFAULT READ .

DEFAULT WRITE .

DEFAULT PROMPT FUNCTION .
DEFAULT PROMPT STRING .

DEFAULT VALIDATION FUNCTION .
DEFAULT VALIDATION RANGE .

DEFAULT OWNER .
DEFAULT READ FORYAT .
DEFAULT WRITE FORMAT .
DEFAULT AUTHOR .
DEFAULT DATE .
DEFAULT DEFINITION .
DEFAULT REFERENCES .
DEFAULT COMMENTS .
DEFAULT STATUS .

::= [STRING)

- 96 -

SUMMARY OF RAND-ABEL SYNTAX CATEGORIES
The following pages contain a summary of the RAND-ABEL syntax
charts contained within cthis document.

R - R Sirabdet bt ltbe bt i +
Report from funct.ion-invecation

+
|
|
|
| Evaluate unitpiran . . . unicparam

| Evaluate with format-spec unicparan . . . unitparaa
|

|

|

|

|

|

tnary-operator expression
expressien binary-operator exprassion

Simple-expr

+-$£nple-expr -------------------------------- remssmenenscearemun. 3
Function funetion-naze

|
|
| +-unitparas-====csmcecncenanana D L L weeemm—— +
o

| Yes

| No

| enumseated-value
| auzeric-literal
| quoted-string
|
|
|
|
|

varioble-naze
Unspecified

v3] l
(expression)

L L L L L L pytrn - - . EEmcscnccaccmanS "o -

+-]‘tﬂlue ------------------------- - - m e n .- - -

variable-nare

| Occupant of variable-nane
| Occupant of array-access

Pointer to varsable-nace
Pointer to Attribute array-naze

PSPPI Y

I
I
l
|
i -;-army-accass ------------------------------------- ;- }
| | array-nare of simple-expr , e | |
P in . and I
I by , and | |
| | |
I 1 N ' siaple-expr | |
I , 3n | l
P |
| e +]
|
+

tedeclaration=====<n=snmennmnn~ e e

Declare variaklo-nana:
Deciare varisble-name by example:

Let varfablo-name be oxpression.
Let vardable-nase be fdentifior constant.
| Let variablo-name be enumerated variable

Declare arcoy>name:
Declare arrap-nime by example:

Lat array-neme of simple-expr , R
Let array-name in simple-expr , and . . .
Let array-nazme by simple-expr , and . . .

— i — — —— T—— " ——d———p S oty anem o

| « o o 4 Simple-expr
« « « , and simple-expr

be expression. |

] Declare func-name :
Declare func-name by example:

Let expression be Report from named-function-call. i
Perform named-function-call. |
|

PP —

--- u—--*-

-99 -

+-function-definition===-======maneees N D LT L LI,

1
| Define named-function-call : declaration . . . |
| declaration |
| statement . . . |
| statement |
I I
| End. |
I I
. cememamenan- mesmseseacmemenmaoooas mmeemmmeenea- —————— —ememed
+=pased-function-call--=======cemc-accna- Sesswmmmncanee Sesssmesene +

func-nane

func-1-me using expression as pavem-naze , . . .

for , and
e e e exprossion as paras-namo
, and for
fommmnnan “mmm——- meemmemeeceeceee- veemmnean- —e———— S e -+
+=function-Inyecat fon==-===-===-==ccemeomrocmcmcmnocosnooo vemmeeme-

named=-Lunction-call

fune-ptr

for , and

e ey expression as param-nana

+

|
| |
| I
I |
I |
| func-ptr using expression as param-name , . e |
| |
| |
! |
| , and for |
I |

+

+-Statopent=======mmmm===enoa= mmesmmemaneenas L mmwmmeand

Let Ivalue be expression.
Let pointer be oxpression.

Increase Jvralue by espression.
Decrease Jvalue by expression.
Multiply Ivalue by exprassion.

Divide Ivalue by expression.

If Boolean-expression Then stateaecnt |
If Doolean-oxpression Then stacement Else stotenent
For variable : statement

While Beolean-expression : statezent |

Continue.

[

I

I

|

!

|

|

{

|

I

|

|

|

|

|

|

|

I

|

|

| Break,

|

| Table func-nane

| Table compound-scatenant
| Decision Table

|

| tablo-header.
|

| table-body.
|
|
|
|
I
|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
I

Perform function-imvocation.

Exit.
Exit Reporting simple-oxpr.

Print unitparan . . . unitparan.
Print with format-spec unitparam . . . unitparan.

Print streamname unitparam . . . unitparam.
Print streamnane with format-spec unitparam . . . unitparax.

l.og unitparam . . . unitparam.
Log with format-spec unitparan . . . unitparan.

Log streamname unitparam . . . unitparam.
Log streamname with format-spec unitparam . . . nitparam.

{ declaration . . . declaration

statement . . . statement)}

- 101 -

()

Trace If.
Trace Function.

Untrace If.
Untrace Function.

o s et i i . S — ——— —— ——

--

+
I
I
I
I
|
I
|
I
!
|
I
I
l
I
l
I
I
l
|
I

+

+

- 102 -

~data dictionary spoclification block

Begin Declarations.
[No] Default DDdeclaration ...

declaration
DDdeclaration . . .
Dhdaclaration

doclaration
DDdeclaration . . .
DDdeclaration

End Declarations.

——— — — — A A— f——— — —— — — — f— t— — — — t— .

... R

-DDdeclaration
Method: Direct.

Method: Function.
Method: Macro.

Function: func-name.
Macro: string-literal.
Clone.

No Clone.
Constant.

Use:
Use:
Use:

Owner: owner-name.

Owner: Global.
Read
Read
Read

Everyone.
owner-nane
owner=-nam2 , . .

Noread
Noread
Noread

Everyone,.
owner-namne
owner-name , . .

Write
Write

Everyone.
owner-name

L L L L L Y T

owner-name.
. , owner-name.

owner-name.
. , oWner-name.

owner-name.

- 103 -

| Write ownor-name , . . . , ownor-name.
Nowrite Everyone.

Nowrite ownor-name . . . owner-namo.
Nowrite owner-name , . . . , owner-name.
| Read Format: string-literal.

Write Format: scring-liccral.

Validation Range: numeral to numeral.

Validation Function: func-name.

| Prompt Function: (func-name.
Prompt String: string-literal.

Initialize.

No Initialize.
Author: comment.
Date: comment.
Definition: comment.
References: comment.
Comments: comment.
Status: comment.

No Default Author.

No Default Comments.

No Default Date.

No Default Definition.

No Default Initialize.

No Default Method.

No Default Owner.

No Default Prompt Function.
No Default Prompt String.
No Default Read Format.

No Default Write Format.

No Default References.

No Default Status.

No Default Use.

No Default Validation Function.
No Default Validation Range.

el i o — ———— —— A —— — —— G— S — —— f—— — — D— — — — —————— .5 — G— d— d——

4 o . S e - R W S G S GRS M S S G G WD S M S G e R W PR) S S D S S e s GP Sm L L e MP GR R G S SE D G P S A A 6 e S W g e

#Define name | unquoted-string }.

Include "£ilenama".

- 105 -

INDEX

\ (backslash) codes, used in format-spec for I1/0 Sé
. « notation, meaning of 6

{...) used to delimit compound statement 59

| logical or operator 2§

~3 operator 22

~ logical not operator 25

~= (synonym for Unspecified) 14

¥define mata-statement 62

$ string concatenation operator 26

codes, used for I/0 formatting SS

logical and operator 25

(Multiplication operator) 21

(Addition operator) 21

and 19

(Subtraction operator) 21

(Unary negation sign) 21

/ (Division operator) 21

<= operator 23

< operator 23

= operator 22

% operator 23

> operator 23

A RAND-ABEL program {iles at RAND 81

.A.c file, produced by RAND-ABEL Iranslator 82

.A.I file, produced by RAND-ABEL Translator 82

.cshre file, inclusion of an alias within 82

D daca dictionary files at RAND 81

¢ % et

Y

Addicion operator (*) 21

Address of phrase 20

Alias for RAND-ABEL Translator access path, how to create 82
Aliases, creation of using ¥define mera-statement 62
and (&) logical operator 25

and 19

are not operator 22

Array declaration, prefix form of 29

Array Declarations 29

Array, basic data type 12

array-access 16

array-access, definition of 19

ASCII characters, production of in output 56
Assignment statement 37

as 34, 35

Author data dictionary declaration 72

Backslash (\) codes, used in format-spec for I/0 56
Backus-Naur Form of RAND-ABEL 89

- 106 -

Basic RAND-ABEL data types 11

Begin Declarations 66

binary-eperator 17

aNF description 89

Boldface, meaning of S

Boolean data type, default output format for 54
Boolsan values, result of logical operatoxs 25
Boolean, basic data type 12

Break statoment 42

Buffors in RAND-ABEL I/0 58

Built-in RAND-ABEIL data types 11

by 19

C programming language 1, 2

Case shifts, distinguishing global from local variables 7
Case shifts, in RAND-ABEL keywords 5

Changing RAND-ABEL rules in the RSAS environment 83
Character string, basic data type 12

Clone option fin Use declaration 68

Close-struom function 57

Cotiments, notation for 9

Comments data dictionarxy declaration 73
Comparison of two enumcrated values 24

Comparison of two strings 23

Comparison Operators 22

Compiling snd loading source code 85

Compound statement 59

ctoncatenated with string operator 26

Corsitional execcution 39

Constant option in Use declaration 68

Continue statement 42

Coprocesses 76

Coprocesses, rules foxr the use of 77

Coroutines (seec coprocesses) 76

Creating a coprocess using Startup-plan f{unction 76
Creating a data value of type process 76

Data dictionary declaration scction, complete example 75
Data dictionary files at RAND 81

data dictionary specification block 66
Data Dictionary 65

Data Editor, in RSAS 71

Data types 11

Date data dictionary declaration 72
Debug.out file 64

Debugging, statements useful for 64
Decision table, example 45

Declaration of functions 30

Declerations 28

Declare ignore statement 80

Declare...by example array declaration 29

- 107 -

Declare...by example declaxation 28

Declare array declaration 29

Declare daclaration 28

Decrease...by sctatement 38

Default declarations, creating asnd removing 73
Default output formats 54

Default data dictionary declaration 73

Define statement for function definition 32
Defining declarations within a data dictionary declaratiorn 67
Definition data dictionary declaration 72
Dircctory structure diagram, RSAS 84

direct option in method de¢claration 67
Divide...by statement 38

divided by operataxr 21

Division by zocxo 2}

Division operator (/) 21

Don't care 19

Ellipsis (. . .), moaning of 6

tlse 39

enabel, program name of RAND-ABEL Translator B2
End Declarations 66

End 33

Enumorated data type 13

Enumerated data type, default output format for 55
Enumcrated, basic data type 12

Equality test for character strings 22

Fqualicty test for enumorated values 23

Equality Tests 22

Exrror messages produced by RAND-ABEL Translator 82
Error stream 56

Evaluate...with expression 17

Evaluate cxpression 17

everyone option in read and write declarations 69
Exit reporting 33

Exit statement 51

Exponential notation 12

expression, definition of 17

expre~sion, meaning 2£ 16

File read/write access data dictionary declarations 69
Flush-stream function 57
format-spec 17, 53

format-spec, definition of 55
Formats, default output 54

For statement 41

Full Data Dictionary rcmake 85
Function Definition 33
function-invocation 35

Functions, declaration of 30
Functions, invoking and exiting 50

Function cxpression 19
function option in method declaration 67

Globa}l data dictionary declaration 68

How to change RAND-ABEL rules without vecomplling 83
liyphen (-) and undexrseore (1), in identifiers 7

Idencifior constant 13

Identifier constant, dafault output formae for 55
Idencifier 7

Identifying declarations 72
If...Then...Else statement 39

Include mota-stavement 63

increase,..by statement 38

Incremental changes to source coda 85
Incquality of two identifier constants 24
Inequalicy of two strings 23

Incquality Tests 23

Informacion declarations 72

Initialize data dictionary declaration 71
Input streoam 56

Input/output statements 52

Integor dacta type, default output format for 54
Integer, basic data type 12

Interproter direoctory 83

Interproter 83

Interpretor, proventing executfon 84
Invoking a funetion 50

in 19

is at least operator 23

is at most operater 23

is greater than oporator 23

is less than operator 23

is not operator 22

is operator 22

Ivalics, meaning of 5

Koywords, RAND-ABRL 5
Keywords, table of all RAND-ABEL 88

Let...be scatement 38

Loading compiled source code 85

Local support cnvironment for RAND-ABEL 81, 87
Logical data type 12

Logical Operators 24

Logical operators, meaning of 25

Log statement 53

lvalue 16

lvalue, definition of 19

- 109 -

Macro definitions, using ¥define mota-statement 62
macro option in method declaration 67

Mazxix, zapresented in RAND-ABEL 30
Meta-statements 62

Method data dictionaxry declaration 67

minus oparator 21

modulo operator 21

Muleciple rows in table-header 48

Multiplication operator (*) 21

Multiply...by szatement 38

named-function-call, definition of 34
negative operator 21

No clone option in Use daclaration 68

No Default data dictionary declaration 74
No Initialize data dictionary declaration 71
Noise words, abjiliey to declare and use 80
Noread data dictionary declaration 69

not (~) logical operator 25

Nowrite data dictionary declaration &9

No 12,19

Null scatement 60

Numeric Operators 21

Occupant of phrase 20

of 19

Open-stream function 57

Operators 20

Options, notation for 35

or () logical oporator 25

Output f{oxmats, default 54

Output stream 56

Owner data dictionary declaration 68

Parcnthesized expression 19

Parent reserved coprocess variable 77

Parent 13

Perform statement 35, 50

Period (.), in identifiers 7

plus operator 21

Pointer data type, default output format for 55
Pointer to phrase 19

Pointexr, basic data type 12

Precedence relations for RAND-ABEL operators 27
Prefix form of array declaration 29

Print statement 53

Process, basic data type 13

Prompt function/string data dictionary declaration 71

Quick-reference guide to RAND-ABEL syntax 87

- 110 -

RAND Stracogy Assessmont Center (RSAC) 1

RAND Strategy Assessmont System (RSAS) 1, 65, 81
RAND-ABEL Interpreter 83

RAND-ABEL koywords 5

RAND-ABEL local support environment 81, 87
RAND-ABEL reserved words 5

RAND-ABEL syntax, quick-roference guide to 87
RAND-ABEL Tronslator 1, 2

RAND-ABEL Translator, access to at RAND 82

Read format data dictionary declaration 70
Read data dictionary declaration 69

Real daca typo, default output format for S&
Real, basic data type 12

References data dictionary declaration 75
Remaking the full Daca Dictionaxy 85
Remove-plan function to terminate a process 77
Repetitive execution 40

Report from ecxpression 17, 35

Reporting 51

Rescrved words, RAND-ABEL 5

Reserved words, table of all RAND-ABEL 88
Returning control from a function with exit statement 51
ROSIE programming language 2

RSAC (RAND Stravegy Asscssment Center) 1

RSAS (RAND Straregy Assessment System 1, 65, 71, 78, 81
RSAS dircectory structure diagram 84

run.sun 85

Self rescrved coprocess variable 77

Self 13

simple-expr 16

siaple-expr, definition of 19

Sleep function for coprocesses 76

Special characters within a table-header 46
Special symbols, table of all RAND-ABEL 88
Standaxd input 52

Standord output 52

Stoxtup-plan function 76

statement 31

Status data dictionary declaration 73
stderr 56

stdin 56

stdout as standaxd output stream 53
stdout 56

Stream, basic data type 13

streamname 53

Streams (for I1/0) 56

String data type, default output format for 54
String Operator 26

String, basic data type 12

Strongly typed language 11

- 111 -

Subroutines, same as functions in RAND-ABEL 50
Subtraction opexator (-) 21

Support environment for RAND-ABEL 81, &7

Synonyms, creation of using Ndefine meta-statement 62
Syntactic categorios, list of RAND-ABEL 96

Syntax chart, explanation 5

Syntax of RAND-ABEL, quick-reference guide to 87

cable-body, tules for constructing 49

table-header, r..es for constructing 46

Table statement 43

Torminating a coprocess 77

Text island, within a cable-header 46

Then 39

times operator 21

Top=~level RAND-ABEL declarations, definitions, and statements 79
Trace statement 64

Truncation of result jin integer division 21

unary-operacor 17

Underscore (.) and hyphen (-), in identifiers 7

unicparas 16

vastparae, definicion of 19

UNIN 1

Unspecified 14, 19

Untrace statement 64

Use Clone/No Clone/Constant data dictionary declaration 68
using 34, 35

Vilidation range/function data dicticnary declaration 71
Value of phrase 19
Veetor, represented in RAND-ABEL 30

While statement 41

White space, in RAND-ABEL statements 9
World Situation Data Ser (WSDS) 65

Write format data diccionary declaration 70
Write daca dictionary declaration 69

Yes 12, 19

- 113 -

BIBLIOGRAPHY

Bell Laboratoxies, UNIN Prograszzmer's Kanual.

Davis, Paul K., Applying Avcificial Intelligence Techniques to
Scrategic-Level Gaming and Simulation, The RAND Corporation,
N-2752-RC, Junc 1988. (Also published in M. Elzas, T. I. Oren, and k.
P. Zeigler (eds.), Nedelling and Siculation Methedology in the
Aceilierial Intelligence Era, Elsevier Scienca Publishers, 3. V.
(Nerth-Hinllang), 1986, pp. 315-338.

Davis, Paul K., Bruee W. Bennett, and William Schwabe, "Analytic War
Gaming with the RAND Strategy Assessment System (RSAS)," The RAND
Corporation, P-7464, July 1988.

Liavis, Paul K., and H. Edward Hall, Overiiew of RSAS Systea Softrarae,
The RAND Corporation, N-2755-NA, fortheoming.

Davis, Paul K., and James A. Winnefeld, The RAND Scrategy Assessment
Center: 4n Overv'iew and Interim Conclusions about Utility and
fdevelopzont Options, The RAND Coxporation, R-2945-DNA, Maxch 1983.

Fain, Jill, D. Gorlin, F. Hays-Roth, S. Rosenschein, H. Sowizral, and D.
Waterman, The ROSIE Language Referenca Manual, ‘The RAND Coxporation,
N-1647=-ARPA, Deocembnr 1981,

Rernighan, Brian W., ond Dennis M. Richie, The € Prograrsing lLanguage
Prentic-lall, Englewood Cliffs, New Jorsey, 1978.

Schwabe, William, and lLewis M. Jamison, A Rula-Based Policy-Level Nodel
of Nensuperpower Behavior in Scrategic Conflicts, The RAND
Corporation, R-2962-DNA, Dacember 1982.

Shapiro, Norman 7., H. Edward Hall, Robert H. Anderson, and Mark
LaCasse, The RAND-ABEL Program=aing Language: MNistory, Rationale, and
Design, The RAND Corporation, R-3274-NA, August 1985.

